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Abstract18

Lagrangian coherent eddies efficiently transport water properties, such as heat and salt, as19

well as tracers, including oil, larvae, and Sargassum, throughout the ocean. For instance,20

during the 2010 Deepwater Horizon oil spill, part of the oil was captured within a Loop21

Current Frontal Eddy (LCFE), preventing it from reaching the Florida Keys. Similarly,22

Loop Current Eddies (LCEs) carry warmer, saltier waters typical of the Caribbean Sea for23

the western Gulf of Mexico (GoM). In this study, we employ machine learning alongside24

various satellite observations—absolute dynamic topography (ADT), sea surface tempera-25

ture (SST), and chlorophyll-a (Chl-a)—to identify Lagrangian coherent eddies in the GoM26

and predict their lifetime. Three durations of Lagrangian coherence are investigated: 5,27

10, and 20 days. This study also investigates the contributions of Chl-a in identifying and28

forecasting LCEs and LCFEs’ Lagrangian coherence, aiming to assess the advantages of29

integrating this dataset into data-assimilative Gulf ocean models, in addition to ADT and30

SST. The machine learning model trained with ADT successfully identifies and predicts31

the lifetimes of eddies, achieving accuracy rates of 90% for LCE identification and 93% for32

lifetime prediction, along with 71% and 61% for LCFEs, respectively. Incorporating SST33

and Chl-a combined enhanced eddy predictions over ADT-only or ADT and SST combined,34

in particular LCEs and LCFEs, highlighting the benefits of assimilating Chl-a into ocean35

models to improve the representation and the forecast of these eddies. This machine learn-36

ing framework has the potential to advance predictions of eddy lifetimes and the advection37

of various tracers.38

Plain Language Summary39

Lagrangian coherent eddies are types of vortices in the ocean that trap water in their40

interior and transport it without exchange with the exterior water. These eddies play a41

key role in transporting water properties such as heat and salt, as well as tracers such as42

oil, larvae, and seaweed (e.g., Sargassum) across the ocean. For example, during the 201043

Deepwater Horizon oil spill, a type of eddy called a Loop Current Frontal Eddy (LCFE)44

trapped some of the oil, keeping it from reaching the Florida Keys. This study uses machine45

learning and satellite data—sea surface height, sea surface temperature, and chlorophyll46

concentration—to identify and predict the lifetimes of these eddies in the GoM. Three47

durations of eddy coherence (5, 10, and 20 days) are analyzed. The machine learning model48

trained with sea surface height successfully identifies and predicts the lifetimes of eddies,49

achieving accuracy rates of 90% for LCE identification and 93% for lifetime prediction, along50

with 71% and 61% for LCFEs, respectively. Adding chlorophyll data from satellite improved51

the predictions compared to using sea surface height and temperature alone. This machine52

learning framework can advance predictions of eddy lifetimes and tracer transport.53

1 Introduction54

Mesoscale eddies are important contributors to the transport of water masses, heat, salt,55

and passive tracers within the ocean (Dong et al., 2014). The ability of ocean vortices to trap56

and transport water and passive tracers without exchange with the exterior is denominated57

Lagrangian coherence (Haller & Beron-Vera, 2013). By definition, no mass flux occurs across58

the boundary of a Lagrangian coherent eddy, ensuring that water is conserved within its59

interior with no exchange with the surroundings. Therefore, Lagrangian coherent eddies60

are very efficient in transporting water properties (heat, salt, and oxygen) and tracers (oil,61

larva, and Sargassum algae) across the ocean.62

In the Gulf of Mexico (GoM), Loop Current Eddies (LCEs) are formed by the detach-63

ment of a portion of the Loop Current (LC) (Figure 1) and they transport warmer and64

saltier Caribbean waters to the central and western Gulf, where they eventually mix with65

local colder and fresher Gulf waters (Meunier et al., 2018, 2024). These warm eddies, which66

have been shown to remain Lagrangian coherent for up to three months (Beron-Vera et al.,67
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2018), present high values of tropical cyclone heat potential and are known to fuel hurricane68

intensification (Shay et al., 2000; Shay, 2000; Jaimes et al., 2016). Another type of eddy69

in the Gulf, smaller, cold-core eddies, actively modulate the local circulation by attracting,70

trapping, and transporting water in their interior—these cold eddies have played a partic-71

ularly important role in the capture of offshore oil from the 2010 Deepwater Horizon oil72

spill, preventing contamination of the Florida keys (Walker et al., 2013; Hiron et al., 2022).73

These smaller cyclonic eddies are called Loop Current Frontal Eddies (LCFEs) and are74

formed by barotropic and baroclinic instability of the LC. They propagate in the vicinity of75

the LC (Donohue et al., 2016a, 2016b) and are Lagrangian coherent from the surface down76

to ∼600m and can conserve water in their interior for up to a month (Hiron et al., 2022).77

In addition to modulating the circulation in the eastern GoM, LCFEs also contribute to78

the shedding of LCEs by intensifying and constricting the neck of the LC (Cochrane, 1972;79

Vukovich & Maul, 1985; Hiron et al., 2020).80

Haller and Beron-Vera (2013) (hereinafter referred to as HBV13) developed a method81

to identify the boundaries of Lagrangian coherent eddies based on trajectories derived from82

gridded velocity fields such as model outputs or geostrophic velocities derived from altimetry.83

This method was used to study, among others, the Lagrangian coherence of LCEs and84

LCFEs (Beron-Vera et al., 2018; Hiron et al., 2022). Although efficient, mathematically85

exact, and objective, the HBV13 method is computationally expensive, and its usage is86

limited to a small community familiar with the algorithm. In this manuscript, we first87

test a machine learning alternative that is able to identify Lagrangian coherent eddies in88

the GoM using solely Absolute Dynamic Topography (ADT) maps from altimetry. Such89

a machine learning model would allow for much faster detection and would be more user-90

friendly for the oceanographic community than HBV13. A secondary goal of this study91

is to test as to whether such a machine learning model can be used to predict if a given92

eddy/rotational feature will become Lagrangian coherent and for how long it will remain93

using only ADT from the present and previous days. Finally, the third goal of this study is94

to evaluate whether the inclusion of satellite-derived chlorophyll-a (Chl-a) maps, alongside95

altimetry-derived ADT and sea surface temperature (SST), compared to ADT-only or ADT96

and SST models, contributes to improving the performance of the machine learning model97

in identifying and predicting Lagrangian coherent eddies, specifically LCEs and LCFEs.98

LC and LCEs exhibit lower Chl-a concentrations than surrounding Gulf waters, making99

these features easily detectable on Chl-a maps, in particular in spring, summer, and fall100

(Chassignet et al., 2005; Hiron et al., 2022; Trott et al., 2024). LC and LCEs can also101

be detected in SST maps, in particular in fall, winter, and spring, due to their higher102

temperatures compared to the surrounding colder Gulf waters (e.g., Walker et al., 2013).103

An interesting aspect of using these two datasets together is that they are complementary104

seasonally: when the LC and LCEs become indistinguishable from the background waters105

on the SST maps in the summer, the Chl-a gradient between the LC/LCE and Gulf waters106

is at its peak (e.g., Trott et al., 2024; Walker et al., 2013). In winter, the opposite occurs.107

In addition to providing complementary information from multiple satellite fields, an-108

other important aspect of incorporating additional satellite data is evaluating the bene-109

fits of including Chl-a, along with ADT and SST, for identifying LCEs and LCFEs in110

data-assimilative ocean models. Current discussions within the oceanography community111

revolve around assimilating Chl-a into regional GoM models (e.g., the 1/100◦ HYbrid Coor-112

dinate Ocean Model using the data assimilative Tendral Statistical Interpolation package or113

HYCOM-TSIS; Ntaganou et al. (2024)). In terms of satellite observations, only altimetry114

ADT tracks (∼1/16◦) and SST gridded product (∼1/10◦) are currently being assimilated115

into HYCOM-TSIS (A. Bozec, personal communication), the primary model used for opera-116

tional forecasting in the GoM with very-high resolution (∼1/100◦). Satellite Chl-a (∼1/25◦)117

could provide additional, higher-resolution information on the location and structure of the118

LC, LCE, and, potentially, LCFE fronts if assimilated into HYCOM-TSIS. Therefore, quan-119

tifying the improvements that Chl-a provides in identifying and forecasting LCEs and LCFEs120

is a first estimation of the benefits of assimilating this field in terms of better placing those121
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features in the models, with potential benefits to regional forecast models, in particular for122

forecasting LCE detachments and their evolution.123

To our knowledge, this is the first study using machine learning to detect Lagrangian124

coherent eddies and to predict the Lagrangian coherence of eddies and their lifetime, which is125

not possible to do with the HBV13 approach since it requires the integration of trajectories126

during the coherence period of the eddies. Machine learning has been a powerful tool for127

the prediction of climate signals (e.g., Arcodia et al., 2023) and one aim of this paper is to128

demonstrate that it can also effectively be used to predict the behavior of mesoscale features129

that significantly influence upper-ocean transport. Predicting the lifetime of ocean vortices130

in the Gulf can have different applications, such as forecasting the transport of water masses131

or tracers such as oil and Sargassum.132

The structure of the paper is as follows: Section 2 describes the datasets; Section 3133

describes the HBV13 method and the machine learning model; in Section 4 are the results134

and discussions; and we finish with conclusions in Section 5.135

2 Datasets136

This study uses three satellite-derived datasets to train the ML models for identifying137

and predicting Lagrangian coherent eddies in the Gulf of Mexico: altimetry ADT, SST, and138

Chl-a data.139

2.1 Absolute Dynamic Topography (ADT)140

ADT data was obtained from the Copernicus Marine Environment Monitoring Service141

(CMEMS) Sea Level Thematic Assembly Center (Copernicus Marine Service, 2022). ADT142

represents the sea surface height above the geoid and includes both the mean dynamic143

topography and the sea level anomalies. The ADT data are distributed as daily, delayed-144

time Level-4 gridded products, derived from multiple satellite altimetry missions such as145

TOPEX/Poseidon, Jason series, Sentinel-3A and 3B, CryoSat-2, and others. The dataset146

covers the global ocean with a horizontal grid-spacing of 1/4◦ (∼ 25 km in the GoM) in147

both latitude and longitude. The temporal coverage used in this study spans from January148

1993 to December 2022. For this study, we focus on the Gulf of Mexico region, extracting149

ADT data within the domain of 18◦N to 32◦N latitude and 99◦W to 75◦W longitude. The150

daily ADT mean over the deep Gulf waters (≥ 200 m) was removed from each daily field151

to remove the contraction/expansion due to seasonal changes in ADT, as done in Leben152

(2005) and Hiron et al. (2020). Geostrophic velocities derived from the ADT fields are used153

to compute trajectories, which are then used to find the boundary of Lagrangian coherent154

eddies. Additionally, the ADT data serve as a primary input to the machine learning models155

for eddy detection and prediction. Link for data access: https://data.marine.copernicus156

.eu/product/SEALEVEL GLO PHY L4 MY 008 047/description.157

2.2 Sea Surface Temperature (SST)158

SST data was obtained from the OSTIA system, developed by the UK Met Office and159

distributed through the Group for High-Resolution Sea Surface Temperature (GHRSST) and160

CMEMS (Donlon et al., 2012). The OSTIA product is a Level-4, high-resolution analysis161

that merges observations from various satellite sensors and in situ observations to provide162

gap-free global SST fields. The OSTIA SST data have a horizontal grid-spacing of 1/20◦163

(∼ 5 km in the GoM) and are available daily from October 1981 to the present. To ensure164

consistency with the ADT data, the SST fields are interpolated onto the same grid covering165

the GoM. Link for data access: https://data.marine.copernicus.eu/product/SST GLO166

SST L4 REP OBSERVATIONS 010 011/description.167
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2.3 Chlorophyll-a Concentration (Chl-a)168

Chlorophyll-a concentration data were obtained from the CMEMS ocean color products,169

which include data from the SeaWiFS and other ocean color sensors such as MODIS-Aqua,170

VIIRS, and the Ocean and Land Colour Instrument (OLCI) aboard Sentinel-3A and 3B171

(Gohin et al., 2002). The Chl-a dataset is a Level-4, multi-sensor merged product that172

provides daily, gap-free coverage of global chlorophyll concentration at the ocean surface.173

The Chl-a data have a native horizontal grid-spacing of approximately 4 km in the GoM.174

For consistency with the ADT and SST datasets, the Chl-a fields are interpolated onto the175

same 0.25◦ grid covering the Gulf of Mexico. This dataset is available from September 1997176

to the present. For this study, we utilized data spanning from January 1998 to December177

2022. Link for data access: https://data.marine.copernicus.eu/product/OCEANCOLOUR178

GLO BGC L4 MY 009 104/description.179

2.4 Data Preprocessing180

All datasets underwent preprocessing steps to ensure compatibility and optimal perfor-181

mance in the machine learning models:182

• Spatial Interpolation: The ADT, SST, and Chl-a data were interpolated onto a183

common regular grid with a spatial resolution of 0.25◦ in both latitude and longitude,184

covering the Gulf of Mexico from 18◦N to 31◦N and 98◦W to 80◦W.185

• Temporal Alignment: Daily data from all datasets were temporally aligned to186

ensure that observations from the same date were used together. This alignment is187

critical for capturing the coincident physical and biological signals associated with188

eddies.189

• Seasonal adjustment: For all variables, the spatial mean was removed on a daily190

basis to eliminate seasonal effects. This process allows the ML models to focus on191

the anomalies of the fields. The removal of the spatial mean effectively creates daily192

anomaly fields for ADT, SST, and Chl-a.193

• Normalization: All these input fields were normalized to have zero mean and unit194

variance. Normalization is important for machine learning models to ensure that all195

input features contribute equally to the training process.196

3 Methods197

3.1 Identifying the boundary of Lagrangian coherent eddies198

We use the method developed by Haller and Beron-Vera (2013) to identify the bound-199

ary of Lagrangian coherent eddies. This methodology requires the evaluation of a set of200

trajectories distributed across the domain. The evolution of those trajectories can be rep-201

resented with the flow map F t0+T
t0 : x0 → x(t; t0,x0), which maps the final position of a202

T -long trajectory starting at (x0, t0).203

To identify the structures of a flow field, the HBV13 Lagrangian method is based on204

the Cauchy-Green tensor, which is formed from the derivatives of the flow map operator.205

Ct0+T
t0 (x0) = ∇F t0+T

t0 (x0)
⊤∇F t0+T

t0 (x0) (1)

The eigenvectors of Ct0+T
t0 (x0) represent the stretching direction of the flow at x0206

along the trajectories. Similarly, the eigenvalues λi of the tensor represent the stretching207

magnitude. In two dimension, the Cauchy-Green tensor is a two-by-two matrix, so it has 2208

sets of eigenvectors (ξ1, ξ2) and eigenvalues (λ1, λ2) defined at each initial position x0.209

Lagrangian coherent eddies are identified as material loops that defy the typical expo-210

nential stretching occurring in unsteady fluids. Such loops r(s) are closed trajectories of211
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Figure 1. Altimetry Absolute Dynamics Topography (ADT; CMEMS Copernicus). The yellow

lines show the vortices that remained Lagrangian coherent for 14 days (from 18 June 2010 to 2 July

2010), and the eddy on the northeast flank for the LCE is the LCFE responsible for attracting and

trapping oil during the 2010 Deepwater Horizon oil spill. The black diamond indicates the location

of the Deepwater Horizon oil rig. The 17 cm ADT contour is shown by the black line to indicate

the LC front.

the vector field η±λ and uniformly stretch by some amount λ. The η±λ field is formed from a212

combination of both eigenvectors and eigenvalues of Ct0+T
t0 (x0), as follows:213

r′(s) = η±λ (r(s)), η±λ =

√
λ2 − λ2

λ2 − λ1
ξ1 ±

√
λ2 − λ1

λ2 − λ1
ξ2. (2)

The last step of the methodology is to integrate r′(s) and identify outermost limit cycles214

of η±λ across the domain. We use a methodology described in Karrasch et al. (2015), which215

allows to efficiently identify locations where coherent eddies can be present, hence speeding216

up calculations.217

The boundary of all Lagrangian coherent eddies from 1993 to 2022 were identified in the218

GoM using geostrophic velocities derived from altimetry ADT, and for different Lagrangian219

coherent advection times: 5 days, 10 days, and 20 days.220

3.2 Machine learning model221

The proposed machine learning models use preprocessed ADT, SST, and Chl-a datasets222

as inputs and are designed to detect and predict eddies identified via the HBV13 method223

(Figure 2). We conduct four experiments to assess the effects of incorporating additional224
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satellite data (SST and Chl-a), the importance of the temporal extent of the training data225

(1993–2002 vs. 1998–2022), and the specific impact of including Chl-a into the models:226

1. ADT Only (1993–2022): Models are trained and validated using only altimetry-227

derived ADT data from the full available period (1993–2022). This establishes a228

baseline, as ADT gradients directly reflect geostrophic currents and mesoscale dy-229

namics. The long temporal coverage allows evaluating how the size of the training230

dataset influences the model’s performance.231

2. ADT, SST, and Chl-a (1998–2022): Models are trained and validated with ADT,232

SST, and Chl-a data over their overlapping period (1998–2022) to examine how in-233

corporating multiple satellite products affects eddy detection and prediction.234

3. ADT and SST (1998–2022): Models are trained and validated using ADT and SST235

data for 1998–2022 to evaluate whether adding Chl-a information further improves236

performance over using just ADT and SST.237

4. ADT Only (1998–2022): Models are trained and validated using only ADT data238

for 1998–2022 to provide a direct comparison to the multi-dataset configuration in239

the same temporal window.240

The models are based on the U-Net architecture (Ronneberger et al., 2015), a well-241

established framework. Although U-Net sometimes produces slightly blurred outputs in242

image-generation tasks and may offer less global context than attention-based variants243

(Oktay, 2018), these issues are less critical for our application. We do not require high-244

resolution outputs, and detecting each coherent vortex primarily depends on information245

from nearby pixels, making U-Net a suitable choice given also our moderate dataset size.246

All models share the same U-Net backbone, with each day of input data for each modality247

treated as an additional input channel. To ensure a fair comparison, we only vary the num-248

ber of input channels, keeping all other parameters (e.g., number of hidden layers, number249

of filters per layer, filter size, batch normalization) constant. Figure 2 provides a detailed250

illustration of one such model.251

The performance of the ML models is evaluated for the detection and prediction of252

eddies that remain Lagrangian coherent for 5, 10, and 20 days. For detection, the models253

incorporate data from both before and during the coherence period, similar to the HBV13254

method. For prediction, only data collected prior to the eddies becoming Lagrangian255

coherent is used. Both detection and prediction scenarios are assessed under different input256

configurations (ADT full, ADT, ADT+SST, and ADT+SST+Chl-a). We conducted six257

tests: [-1,0], [-2,0], [0,0], [-2,+T ], [-1,+T ], and [0,+T ], where the first number indicates258

the number of input days before coherence onset, and the second number represents the259

coherence period itself. For example, [-2,+T ] uses data from two days before the eddy260

becomes coherent and throughout the entire coherence period T . Each test was run twice261

to account for variability introduced by random model weight initialization. This process is262

repeated for each of the three coherence durations (5, 10, and 20 days) and for each of the263

four input configurations.264

3.2.1 Training265

Eighty percent of the data was used for training, and the remaining twenty percent was266

reserved for validation. The proposed architecture is trained using contours identified by the267

HBV13 method, which relies on trajectories computed from geostrophic velocities derived268

from altimetric ADT data. These HBV13-generated contours, initially provided as lists of269

geospatial coordinates, are post-processed into binary grids at a uniform 0.25◦ resolution in270

latitude and longitude. In these binary grids, Lagrangian coherent vortices appear as closed271

masks with values of 1, and these masks serve as ground-truth labels for the ML models.272
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Figure 2. U-Net architecture: (upper-left) Chl-a, SST, and ADT maps serve as input for the

machine learning model, which is then segmented into a series of convolutional network (lower

panel), and is weighted by the Lagrangian coherent eddies detected using HBV13 (upper-right).

The models are trained using the Adam optimizer (with a learning rate of 0.001) and a273

learning rate scheduler. Training is terminated if the validation error does not improve for274

100 consecutive epochs. The loss function is defined as:275

DSC Loss(A, B) = 1− 2|A ∩B|
|A|+ |B|

, (3)

where A is the predicted mask of Lagrangian coherent vortices, and B is the corre-276

sponding ground truth mask derived from the HBV13 method. This loss corresponds to277

1 − the Dice Similarity Coefficient (DSC), and a smaller value indicates better agreement278

between the predictions and the true vortex masks.279

A given Lagrangian coherent eddy is considered as detected by the machine learning280

model if the overlap between the HBV13 eddy and the machine learning eddy is of at least281

33%. We examine the performance of the machine learning model in detecting (a) all eddies282

in the GoM, and only (b) LCEs, and (c) LCFEs. After removing the mean ADT, the ADT283

field in the GoM varies roughly between -0.35 m and 0.5 m. Since the machine learning284

model is trained with ADT fields, for (a), we focus on the detection of somewhat stronger285

eddies, which have an ADT signal on average larger than 0.3 m (anticyclonic eddies) and286

smaller than -0.1 m (cyclonic eddies). For the detection of LCEs (b), an eddy is considered287

an LCE if the maximum ADT within the eddy is larger than 0.17 m, which is the contour288

that has been vastly used to detect the LC and LCE fronts (Leben, 2005; Hiron et al.,289

2020). For LCFEs (c), a given eddy is considered an LCFE if it is located east of 90◦W, the290

minimum distance between the given eddy and the 17 cm ADT contour (LCFE or LCE) is291

smaller than 100 km, similar to Hiron et al. (2020), the averaged ADT is smaller than -0.1292

m, and the minimum ADT is smaller than -0.2 m. The thresholds used to detect LCEs and293

LCFEs were validated visually.294

4 Results and discussion295

4.1 Validation loss296

The validation loss (VL) is a metric used during the training of artificial neural networks297

to assess the model’s performance on a validation set. The VL provides an estimate of how298
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Figure 3. Validation loss using ADT maps for training sequences performed with various input

periods to detect Lagrangian coherent eddies of different coherent times (5, 10, and 20 days; colors).

The number before (after) the negative (plus) sign indicates the number of daily ADT maps inputted

before (during) the eddies’ Lagrangian coherence.

well the model will generalize to unseen examples; when the validation set is large and299

properly representative of the true data distribution, this estimate is typically reliable. In300

other words, VL indicates how effectively the model has learned patterns during training,301

with lower values signifying better performance. In Figure 3, we show the performance of302

all machine learning models for the Lagrangian coherent advection times of 5, 10, and 20303

days (distinct colors), and trained using ADT from different input periods: (i) during the304

time of eddy Lagrangian coherence ([-0,+T ], where T is the time of Lagrangian coherence305

of the eddies), (ii) only days before the eddies become Lagrangian coherent ([-2,+0] and306

[-1,+0]), and (iii) all combined ([-1,+T ] and [-2,+T ]). Evaluating a machine learning model307

trained solely on satellite data before the eddies become Lagrangian coherent gives insights308

into the ability of the model to predict the coherence of eddies.309

The trained models exhibit three distinct levels of performance (Figure 3). The best310

performance (lower values) corresponds to detection, which leverages information from days311

when the eddy is coherent ([−2,+T ], [−1,+T ], and [−0,+T ]). Next, we see the models used312

for prediction, only incorporating data from earlier days ([−2,+0] and [−1,+0]). Finally,313

performance decreases when only the current day is provided as input ([−0,+0]). The VLs314

for the trainings using ADT and SST, and ADT, SST, and Chl-a presented a similar pattern.315

4.2 Identification and prediction of Lagrangian coherent eddies using ma-316

chine learning and ADT317

The machine learning models trained using ADT fields successfully detect the La-318

grangian coherent eddies present in the GoM with different lifetimes, spanning from 5 to 20319

days (Figure 4a,d for a 10-day lifetime). When trained and validated with all ADT data320

available (1993–2022), we find that machine learning can identify ([-2,+T ]) 65% of the ed-321
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Figure 4. (a,d) ADT, (b,e) SST, and (c,f) Chl-a maps for the winter (a-c, 27 February 2021)

and summer (d-f, 31 August 2021) superposed with the Lagrangian coherent eddy boundaries (10

days of coherence) detected with the HBV13 method (yellow contours) and the machine learning

model (red contours) trained and validated with ADT data ([-2, 10]) for the 1993–2022 period.

Note that the temperature colorbar ranges differ between the two dates, and it was specifically

chosen to emphasize the absence of LC/LCE signatures during the summer. The black line is the

17-cm ADT contour used to track the LC and LCEs.

dies that remain Lagrangian coherent for 5 days, 65% of the 10-day lived eddies, and 61% of322

the eddies with a 20-day lifetime. For the prediction ([-2,0]) of Lagrangian coherent eddies,323

the machine learning models were trained using solely two days of ADT data and HBV13324

eddy contours prior to the coherence of the eddies. We find that machine learning trained325

with ADT fields can predict 54% of the 5-day, 54% of the 10-day, and 50% of the 20-day326

lived eddies.327

The performance of the machine learning models is even more effective in identifying328

and predicting the Lagrangian coherence of just the LCEs and LCFEs. For the LCEs, the329

models accurately identified 87% of the 5-day lived eddies, 87% of the 10-day lived, and 90%330

of the 20-day ones, and accurately predicted 86%, 87%, and 93% of the 5-, 10-, and 20-day331

coherent LCEs, respectively. For LCFEs, the models accurately identified 71% of the 5-day332

lived eddies, 71% of the 10-day, and 51% of the 20-day ones, and accurately predicted 60%,333

61%, and 43% of the 5-, 10-, and 20-day coherent LCFEs, respectively.334

The decrease in the percentage of detection of eddies with a lifetime of 20 days, in335

particular for all eddies and the LCFEs, is likely due to the lower number of eddies that336

live 20 days in the GoM (Tables 1–3), which decreases the number of data available to train337

the model and, therefore, impacts its performance. LCEs, on the other hand, can remain338

Lagrangian coherent for much longer (up to 200 days; Beron-Vera et al., 2018), and 20-day339

Lagrangian coherent LCEs tend to be more organized, and thus have a more detectable340

ADT signal, explaining the increase in the percentage of detection for both identification341

and prediction for 20-days lived eddies in comparison with 5- and 10-day lived ones.342
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Figure 5. Percentage of Lagrangian coherent eddies detected for different coherent times (5, 10,

and 20 days) for the machine learning model trained and validated only with ADT (1993–2022) to

(a) identify [-2,+T] and (b) predict [-2,+0] all Lagrangian coherent eddies in the Gulf of Mexico

(square), LCEs (diamonds), and LCFEs (triangles). The number before (after) the negative (plus)

sign indicates the number of daily ADT maps inputted before (after) the eddies became Lagrangian

coherent.

4.3 Prediction and identification of Lagrangian coherent eddies using ma-343

chine learning and ADT, SST, and Chl-a344

4.3.1 Combined SST and Chl-a increases the prediction of eddies345

The addition of combined SST and Chl-a data to the training of the machine learning346

models, along with ADT data, enhanced the forecast (input [-2,0]) of all the eddies in347

the GoM, including the forecast of LCFEs and LCEs, compared to models trained with348

ADT-only, or ADT and SST combined without Chl-a (Figure 6). When comparing with349

models trained with ADT alone, the inclusion of combined SST and Chl-a data increased350

the detection of predicted Lagrangian coherent eddies for all eddies in the GoM from 57%351

to 58% for 5-day lived eddies, from 55% to 56% for 10-day, and from 55% to 57% for 20-day352

lived ones (Figure 6a). For LCFEs, the detection of predicted eddies increased from 62%353

to 67% for 5-day coherence, from 63% to 68% for 10-day coherence, and from 46% to 47%354

for 20 days (Figure 6b). For LCEs, the increase in the predicted eddies occurred for 10-day355

coherence (from 89% to 92%) and 20 days (from 89% to 95%) lived eddies, but not for356

5-day lived LCEs, in which the detection decreased from 89% to 84% (Figure 6c). Note that357

the models trained with ADT and SST, without Chl-a, underperformed, in some cases, the358

models trained with ADT alone.359

The contribution of combined SST and Chl-a in the improvement of the machine learn-360

ing models detecting eddies in the GoM is visible in Figure 4b,c,e,f, in particular for LCFEs361

and LCEs. In fall, winter, and spring, when the Gulf is still colder than Caribbean wa-362

ters, the LC and LCE have a thermal signature at the surface, which is not visible in the363

summer when the Gulf temperature rises. In terms of Chl-a, the nutrient-poorer LC and364

LCEs are distinguishable from the background Gulf waters in spring, summer, and fall (e.g.,365

Chassignet et al., 2005; Trott et al., 2024). Since LCEs are Lagrangian coherent vortices366

(Beron-Vera et al., 2018), the warmer and nutrient-poorer waters remain inside the LCEs367

with minimum exchange with surrounding waters. Additionally, the strong flow associated368

with the LC and LCEs fronts facilitates the advection of Mississippi River waters rich in369
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Figure 6. Percentage of Lagrangian coherent vortices detected for different coherent times (5,

10, and 20 days) for the machine learning model trained and validated with only ADT (blue), ADT

and SST (red), and a combination of ADT, SST, and Chl-a (green) to predict [-2,+0] Lagrangian

coherent eddies: (a) all eddies in the Gulf of Mexico, (b) LCFEs, and (c) LCEs.

Chl-a from the shelf along the front, enhancing the Chl-a gradient across the boundary of370

the LC and LCEs (Figure 4f). In winter, due to higher winds and winter convective mixing,371

the signature of LC/LCEs in the Chl-a maps decreases (Damien et al., 2021). The lack of372

eddy signature in the SST fields in the summer could be the (or one of the) reason(s) why373

the models with ADT-only outperformed, in some cases, the models with combined ADT374

and SST.375

For the LCFEs, the signature in SST is mostly due to the horizontal advection of warmer376

water from the LC/LCE around the cold-core eddies (Figure 4b for both LCFEs on the east377

and north flank of the LC). Another SST signature associated with LCFEs can be a cool378

signature associated with the upward lifting of deeper isotherms to the upper ocean due to379

geostrophic adjustment, especially when these LCFEs are larger and stronger, which occurs380

typically in the northern and eastern flanks of the LC in the last stages before and during381

LCE shedding (Hiron et al., 2020). Similarly to LCEs, large LCFEs are also Lagrangian382

coherent structures (Hiron et al., 2022), which means that they have well-defined boundaries383

and preserve water in their interior during the time of coherence. However, an important384

distinction from LCEs is that LCFEs are formed by Gulf waters (Hiron et al., 2022). Thus,385

their signature in Chl-a maps is not due directly to their coherence, as with LCEs, but386

is instead likely associated with the strong velocities in the LC-LCFE (LCE-LCFE) fronts387

that attract Mississippi River, nutrient-rich waters along the LC-LCFE front and around388

the LCFEs (e.g., Androulidakis et al., 2014; Hiron et al., 2022). This configuration occurs389

particularly when the LCFEs are in the northern and eastern flanks of an extended LC390

or in the vicinity of an LCE (e.g., LCFE on the northern flank of the LC in Figure 4f).391

For more information on LC-LCFE fronts we recommend consulting Olascoaga and Haller392

(2012), Hiron et al. (2020), and Hiron et al. (2022). Some cases of very strong LCFEs can393

cause vertical advection of deeper, rich-in-nutrient waters to the surface (e.g., LCFE on the394

eastern flank of the LC in Figure 4f, and Hiron et al. (2020)).395

4.3.2 The impact of SST and Chl-a in the identification of eddies396

Contrary to the prediction ([-2,0]) of eddies, the inclusion of SST and Chl-a maps397

decreased the number of eddies identified ([-2,+T ]) using the machine learning models (see398

Tables 1-3). We believe this is due to the discontinuity presented in SST and Chl-a maps399

caused by cloud coverage, which can impact the performance of the machine learning model.400

For the prediction of eddies, only data for two days (prior to the coherence) is used, whereas401

for the identification, a total of 7 days ([-2,+5]) of data is used for the 5-day of Lagrangian402
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coherence and a total of 12 and 22 days of data is used for 10 and 20 days of Lagrangian403

coherence, respectively. Therefore, using multiple days as input increases the chances of404

having maps with missing data, impacting the performance of the machine-learning models.405

5 Conclusions406

This study explores the ability of a machine learning model to identify and predict407

the Lagrangian coherence of eddies in the GoM using only satellite-derived observations,408

including ADT, SST, and Chl-a datasets. Three different eddy lifetimes are tested: 5,409

10, and 20 days. The identification of the eddies is done by using, for both training and410

validation, data from two days prior to Lagrangian coherence and days for the whole period411

of the eddies’ lifetime (or period when the eddy is Lagrangian coherent). For the prediction412

runs, only data from the two days prior to coherence were used. Eight sets of training413

were performed: one using solely ADT data for the whole period of data available (1993–414

2022) and one using ADT, SST, and Chl-a for the period of time these datasets overlap415

(1998–2022). A third and fourth sets of trainings were conducted using only ADT, and416

combined ADT and SST data for the period from 1998 to 2022, aiming to compare with the417

run that combined ADT, SST, and Chl-a data. Each of these configurations was used to418

train two models: one to identify and another to predict Lagrangian coherent eddies. The419

machine learning approach identifies vortices significantly faster than HBV13, achieving420

speedups of up to two orders of magnitude (1s with machine learning vs. 180s with a Julia421

implementation of HBV13), in addition to being a much more user-friendly way to detect422

Lagrangian coherent eddies.423

We find that machine learning can identify and predict Lagrangian coherent eddies in424

the GoM for different eddy’s lifetimes relying solely on current ADT information, which425

is not possible with the HBV13 method. This is the first study to use machine learning426

for detecting Lagrangian coherent eddies and predicting their Lagrangian coherence and427

lifetime, which is also not possible to do with the HBV13 method. On average, the machine428

learning models trained and validated with ADT (1993–2022) identified 65% of the eddies429

with lifetimes of 5 and 10 days and predicted 54% of the eddies with Lagrangian coherence430

of 5 and 10 days. The ability to detect eddies decreased for eddies with longer lifetimes. The431

performance of the machine learning models increased when testing only for the detection432

of two important types of eddies in the GoM: LCE and LCFEs. The models identified 87%433

of the LCEs with a lifetime of 5 and 10 days, and 90% for 20 days. For the prediction434

of LCEs, the machine learning model detected 86% of LCEs for a lifetime of 5 days, 87%435

for 10 days, and 93% for 20 days. For LCFEs, the percentage of detection for identified436

LCFEs was 71% for 5-day and 10-day lived eddies, and 51% for 20-day lived eddies. For the437

forecasted LCFEs, the percentage of detected eddies was 60% for 5-day lived eddies, 61%438

for 10-day ones, and 43% for the 20-day ones.439

We also find that the inclusion of SST and Chl-a combined in the training and validation440

of the machine learning models, in addition to ADT, for the 1998–2022 period, increases441

the prediction of the Lagrangian coherence of eddies, including the LCEs and LCFEs. This442

approach outperforms models trained with ADT alone or with ADT and SST without Chl-a.443

This finding is particularly important given the current discussions within the GoMmodeling444

community related to the assimilation of SST and Chl-a into hindcast and forecast models445

for the GoM to improve the representation of the LCEs and LCFEs. We find that, for the446

forecast of LCEs, the inclusion of SST and Chl-a combined increased the detected eddies447

from 89% to 92% for eddies with 10-day lifetime, and from 89% to 95% for those with 20-day448

lifetime, compared to the models using ADT-only. Additionally, when comparing with the449

models using ADT-only, the prediction of LCFEs increased from 62% to 67% for 5 days of450

coherence, from 63% to 68% for 10 days, and from 46% to 47% for 20 days when including451

SST and Chl-a combined in the training and validation.452
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In summary, we demonstrate that (1) machine learning coupled with satellite obser-453

vations can effectively be used to identify and predict the lifetime of Lagrangian coherent454

eddies, which have a significant influence on upper-ocean transport, and that (2) Chl-a455

provides additional information on the Lagrangian coherence of eddies in the GoM, on par-456

ticular LCEs and LCFEs for both identification and prediction, highlighting the benefits457

of assimilating this dataset in GoM ocean models. This machine learning framework has458

the potential to enhance predictions of eddy lifetimes and the advection of various tracers459

while also making these methods more accessible to the community compared to traditional460

dynamical system-based eddy extraction techniques.461
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Table 1. Number of eddies detected by the HBV13 method and the machine learning for both

identification and prediction of coherent eddies for all eddies in the Gulf of Mexico.
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Table 2. Number of eddies detected by the HBV13 method and the machine learning for both

identification and prediction of coherent eddies for Loop Current Frontal Eddies.
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Table 3. Number of eddies detected by the HBV13 method and the machine learning for both

identification and prediction of coherent eddies for Loop Current Eddies.
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