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Abstract In this study, we compare the simulation of El

Niño and the Southern Oscillation (ENSO) in the historical

integrations of 17 Coupled Model Intercomparison Project

5 (CMIP5) models with corresponding observations. The

mean state and ENSO variations are analyzed in both the

atmosphere and ocean and it is found that most of the

CMIP5 models exhibit cold (warm) biases in the equatorial

(subtropical eastern) Pacific Ocean sea surface temperature

that are reminiscent of the split intertropical convergence

zone phenomenon found in previous studies. There is,

however, a major improvement in the representation of the

power spectrum of the Niño3.4 sea surface temperature

variations, which shows that, as in the observations, a

majority of the models display a spectral peak in the

2–7 year range, have a near-linear relationship with the

displacement of the equatorial thermocline and exhibit a

robust atmospheric response to ENSO variations. Several

issues remain such as erroneous amplitudes in the Niño3.4

sea surface temperature spectrum’s peak and a width of the

spectral peak that is either too broad or too narrow. It is

also seen that most CMIP5 models unlike the observations

extend the ENSO variations in the equatorial Pacific too far

westward beyond the dateline and there is very little

asymmetry in event duration between the warm and cold

phases. ENSO variability forces a dominant mode of

rainfall variability in the southeastern United States,

especially in the boreal winter season. The CMIP5 exhib-

ited a wide range of response in this metric with several

displaying weak to nonexistent, some showing relatively

strong, and one indicating excessively zonally symmetric

teleconnection over the southeastern United States.

Keywords ENSO � CMIP5 � El Niño � Southern

Oscillation � Ocean–atmosphere interaction � Climate �
Variability

Introduction

Validating El Niño and the Southern Oscillation (ENSO) in

coupled ocean–atmosphere climate models is considered to

be vital to understand and build confidence in the fidelity of

the model (Guilyardi et al. 2009). This is partly because

ENSO is one the best known natural climate variations

(Philander 1990), which is relatively well observed (Zebiak

and Cane 1987; Battisti 1988; Battisti and Hirst 1989;

Hayes et al. 1991; McPhaden 1993; Jin 1997; Neelin et al.

1998) and, in comparison with other natural climate sig-

nals, is well understood theoretically (Kirtman 1997;

Clarke 2008). There is also a good precedent for ENSO

intercomparison studies which have been benchmarking

the progress of the global coupled ocean–atmosphere

model development (Mechoso et al. 1995; AchutaRao and

Sperber 2006; Guilyardi et al. 2012). In the process of this

constant engagement of ENSO verification from one gen-

eration of models to the other, the community is slowly

getting a better comprehension of the metrics that critically

evaluate the model simulations (Guilyardi et al. 2009; NRC
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2010). Most importantly, however, ENSO variations

strongly affect the climate variations in the southeastern

United States (Ropelewski and Halpert 1987; Kiladis and

Diaz 1989; Diaz et al. 2001; Misra and DiNapoli 2012).

Therefore, the validation of the ENSO simulation in a

climate model is relevant to evaluating its efficacy for use

in understanding the southeastern US climate variations

and change.

From the first climate model intercomparison study that

displayed no ENSO features (Mechoso et al. 1995), there

has been a steady, incremental progress in the simulation of

ENSO (Guilyardi et al. 2012). One of the significant

challenges in improving ENSO representation climate

models is that we have not come across a panacea that

works universally across all coupled models. For example,

several modeling groups have successfully improved the

tropical mean state and the ENSO simulation of their cli-

mate models by changing one of the following (a) deep

convective parameterization scheme in the atmospheric

model (Zhang and Wang 2006; Neale et al. 2008), (b) dif-

fusion in the ocean models (Meehl et al. 2001), and

(c) resolution of the atmospheric and oceanic models (Gent

et al. 2010). However, the same modification in other cli-

mate models did not lead to the same improvement and

often yielded undesired results (http://www.iges.org/ctbm

05/meetingreport.html). It is important to note that most of

these climate models continue to systematically display a

split intertropical convergence zone (ITCZ) (Mechoso et al.

1995), which is considered to be detrimental to the ENSO

simulation. Modest improvements in the intensity of this

split-ITCZ bias have been reported in (Zhang and Wang

2006; Neale et al. 2008).

Other common errors in the representation of ENSO in

coupled models are an erroneous westward extension of the

ENSO variability beyond the dateline, a narrower than

observed meridional extent of the equatorial Pacific SST

anomalies, and an ENSO which is too periodic and sym-

metric (AchutaRao and Sperber 2006; Joseph and Nigam

2006). Features of ENSO that are traditionally well rep-

resented are the seasonal phase locking of ENSO vari-

ability and the teleconnection of ENSO over North

America (Misra et al. 2007; Joseph and Nigam 2006).

In this study, we examine the mean state as well as the

variations on the ENSO timescales in the historical simu-

lations of the Coupled Model Intercomparison Project 5

(CMIP5) models, which will be used in preparing the

International Panel for Climate Change (IPCC) Assessment

Report 5 (AR5). It should be noted that the CMIP3 suite of

models was used in the preparation of AR4 (Solomon et al.

2007); there was no CMIP4. A brief description of the

model output and the validation datasets used in the anal-

ysis are provided in the supplementary material. The results

are discussed in the following section followed by con-

clusions in ‘‘Summary and conclusion.’’

Results

Mean state

Several studies (Federov and Philander 2001; Wittenberg

et al. 2006) suggest that fidelity of the mean state is critical

for successful ENSO simulation. The mean observed SST

field (Fig. 1a) shows the equatorial cold tongue off the

coast of Peru and the tropical western Pacific warm pool.

The replication of this equatorial zonal temperature gra-

dient is important for the coupled feedbacks of the ENSO

variations (Clarke 2008). The CMIP5 model SST error

fields (Fig. 1b–r) exhibit biases in three areas: a cold bias

over the cold tongue in the equatorial Pacific Ocean, a

warm bias in the eastern oceans of the subtropical region,

and a cold bias in the western portion of the subtropical

Pacific Ocean. The annual mean SST errors averaged over

these three regions are indicated in Table 2.11. All of these

errors were quite prevalent in the CMIP3 models (Achut-

aRao and Sperber 2006; Capotondi et al. 2006), and

unfortunately, these errors are still present in the CMIP5

suite of models. The most extreme cold bias in the

Fig. 2 The annual mean thermocline depth (20 �C isotherm) in

meters averaged between 5S-5 N

Fig. 1 a Observed annual mean SST (ERSSTv3b) and annual mean

SST errors from, b BCC-CSM1-1, c CanESM2, d CCSM4, e CNRM-

CM5, f CSIRO-Mk3-6, g GFDL-CM3, h GFDL-ESM2G, i GFDL-

ESM2 M, j GISS-E2-H, k GISS-E2-R, l HadGEM2-ES, m INM-CM4,

n IPSL-CM5A-LR, o MIROC5, p MPI-ESM-LR, q MRI-CGCM3, and

r NorESM1-M; the units are in �C. Values significant at 95 % confidence

limit are shaded

b

1 See supplementary material for details.

Generation of climate models

123



equatorial Pacific is seen in the CSRIO-Mk3.6 (Fig. 1f) and

it is the only model to have a cold bias over nearly the

entire tropical Pacific basin. However, GISS-E2-H (Fig. 1j)

and GISS-E2-R (Fig. 1k) display a widespread warm bias

across the eastern oceans, covering even the cold tongue

region. In GFDL-CM3 (Fig. 1g), MIROC5 (Fig. 1o), and

NorESM1-M (Fig. 1r), the errors at the equator and over

the Peruvian coast are comparatively far less but they show

significant cold biases in northwestern Pacific. Table 2.1

and Fig. 1c indicate that CanESM2 has the least bias in

these three regions.

In Fig. 2, we show the Pacific equatorial cross-section

of the mean thermocline depth (defined as the depth of

the 20 �C isotherm) averaged between 5�S and 5�N for

each of the models overlaid with the depth from the

observations-based reanalysis GODAS*. It is generally

seen that the slope of the thermocline depth is reasonably

well captured by the models with deeper (shallower)

depths in the western (eastern) equatorial Pacific Ocean.

However, the model biases tend to cluster with a majority

of the climate models having steeper gradient across

equatorial Pacific Ocean. In GISS-E2-R, the slope of the

thermocline is relatively weaker than most other models

and observations while CCSM4 seems to nearly replicate

the zonal gradient of the equatorial Pacific thermocline

depth in GODAS. Further information on the climato-

logical seasonal cycle of the equatorial Pacific Ocean in

the CMIP5 models is provided in the supplementary

material.

Spectral analysis

Using the maximum entropy method of order 40 (Ghil

et al. 2002), the spectra based on the Niño3.4 SST are

shown in Fig. 3; the models have been subdivided into

three classes by the strength of the ENSO signal. The Niño

3.4 SST spectral peak of CSIRO-Mk3.6, GFDL-ESM2G,

GISS-E2-H, GISS-E2-R, INM-CM4, and IPSL-CM5-LR

(Fig. 3a) is broadest of all the other CMIP5 models. Fur-

thermore, in this group of models, it may be noted that the

amplitude of the spectrum at peak and at the biennial

timescale is comparable to the observations. However, four

of the models (CSIRO-Mk3.6, GISS-E2-H, GISS-E2-R,

INM-CM4, and IPSL-CM5A-LR) in Fig. 3a also exhibit

the largest bias in SST (Table 2.1 and Fig. 1). The spectra

of BCC-CSM1-1, CanESM2, CNRM-CM5, GFDL-CM3,

HadGEM-ES, and MPI-ESM-LR (Fig. 3b) display a very

strong ENSO signal (in terms of the amplitude) compared

to the observations. Furthermore, with the exception of

MPI-ESM-LR, all have a significant secondary peak at

around the biennial timescale. Lastly, in Fig. 3c, we show

the spectrum of the Niño3.4 SST anomalies from CCSM4,

GFDL-ESM2 M, MIROC5, and NorESM1-M, which have

peak variability closer to the observed frequency than other

CMIP5 models. However, the power of the ENSO

Fig. 3 Sample spectrum of the Niño 3.4 SST using maximum

entropy method (Ghil et al. 2002) with observations (ERSSTv3b) in

black and AR1 model of observations in gray

J. -P. Michael et al.

123



Fig. 4 Lead/lag Niño 3.4 SST

regression on equatorial Pacific

SST normalized by the standard

deviation of the Niño 3.4 SSTs

for 17 models. Observations are

from ERSSTv3b
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spectrum in this class of models is relatively much higher

than any other group of models including that in Fig. 3b.

Further, the slender peaks of the spectrum are also

indicative of the ENSO events being too periodic in this

class of models. The supplementary material further dis-

cusses the evaluation of the duration of the ENSO events

and the seasonal phase locking feature of ENSO vari-

ability. A key feature of the ENSO variations is that it is

phase locked with the seasonal cycle of the eastern

equatorial Pacific SST (Chang et al. 1995). It is seen that

ENSO variability usually peaks near the end of the year

when the SST are coolest in the eastern equatorial Pacific.

This feature of ENSO is further analyzed in the supple-

mentary material.

Lag/lead relationship with equatorial Pacific

The lag/lead relationship of the Niño3.4 SST anomalies

with the SST anomalies over the equatorial Pacific Ocean

illustrates the asymmetry between the phases of ENSO,

the zonal extent of the ENSO anomalies in the equatorial

Pacific, and the period of the ENSO oscillation. Figure 4

shows the normalized lag/lead regressions for the equa-

torial Pacific SST (averaged between 5�N and 5�S) with

Niño3.4 SST anomalies leading (lagging) equatorial

Pacific SST anomalies for negative (positive) lags. All the

models in Fig. 4, including the observations, show an

asymmetry between the ENSO phases, with the amplitude

of one phase being relatively stronger than the other.

However, a majority of these models fail to show that the

duration of one phase is longer than the other with pos-

sible exception of GISS-E2-R (Fig. 4k) and MRI-CGCM3

(Fig. 4p). The westward propagation of anomalies is not

well simulated by a number of models; CNRM-CM5

(Fig. 4e), GISS-E2-R (Fig. 4k), HadGEM2-ES (Fig. 4l),

and MIROC (Fig. 4o) all lack a distinct propagation

and GFDL-ESM2 M (Fig. 4i) appears to propagate

eastward with time. Another major issue with the

CMIP5 simulation is the erroneous westward extension of

the SST anomalies beyond the dateline as displayed most

acutely by CanESM2 (Fig. 4c), CSIRO-Mk3.6 (Fig. 4f),

GFDL-CM3 (Fig. 4g), GFDL-ESM2G (Fig. 4h),

GFDL-ESM2 M (Fig. 4i), GISS-E2-H (Fig. 4j), INM-

CM4 (Fig. 4m), IPSL-CM5A-LR (Fig. 4m), MIROC5

(Fig. 4o), and MPI-ESM-LR (Fig. 4p). In contrast, some

models are unable to get the anomalies far enough to the

east near the Peruvian coast (e.g., GISS-E2-H [Fig. 4j],

GISS-E2-R [Fig. 4k], INM-CM4 [Fig. 4m], IPSL-CM5A-

LR [Fig. 4n], and MRI-CGCM3 [Fig. 4q]). The variations

of the eastern equatorial Pacific SST are closely related to

the associated variations in the depth of the underlying

thermocline (Zelle et al. 2004), which is further discussed

in the supplementary material.

Remote ENSO forcing over the Southeastern United

States

The midlatitude response as a result of atmospheric waves

traversing the great circle from anomalous convection in

the equatorial oceans as a consequence of in situ anoma-

lous warm SST has been found to constitute over 50 % of

the variance of the boreal winter 200 hPa geopotential

heights in some areas of North America (Wallace and

Gutzler 1981; Straus and Shukla 2000) including the

southeastern United States. As a result of this teleconnec-

tion, El Niño (La Niña) winters are typically characterized

by wet and cold (warm and dry) winter climate in the

southeastern United States.

Figure 5a shows the Boreal winter (DJF) regression of

Niño3.4 SST anomalies on precipitation from NCEP-

NCAR reanalysis; likewise, Fig. 6a shows the Boreal

winter (DJF) regression of Niño3.4 SST anomalies on

200 hPa geopotential height. The observed geopotential

height anomaly shows the typical high (over tropical

Pacific), low (over Alaska), high (over Canadian Prairies),

and low (over southeast United States) associated with

warm Niño3.4 SST anomalies that dictate the precipitation

pattern of the Southeastern United States in Fig. 5a. Most

of the CMIP5 models (Figs. 5b–r, 6b–r) are able to capture

some form of this ENSO teleconnection over the South-

eastern United States. There are large variations in the

response, with several being rather weak (GISS-E2-H

[Figs. 5j, 6j], GISS-E2-R [Figs. 5k, 6k]), or nonexistent

(GFDL-ESM2G [Figs. 5h, 6h], GFDL-ESM2 M [Fig. 5i]);

several being relatively strong (CanESM2 [Figs. 5c,6c],

CCSM [Figs. 5d, 6d], CSIRO-Mk3-6 [Fig. 5g], NorESM1-M

[Fig. 6r]), and one (INM-CM4 [Fig. 5m, 6m]) being exces-

sively zonally symmetric.

Summary and conclusion

The teleconnection of ENSO variation with the southeast

climate variations cannot be understated. It is one of the

most well-known teleconnection patterns with warm (cold)

ENSO events typically resulting in wet (dry) and cold

(warm) winters in the southeastern United States. By ana-

lyzing the ENSO fidelity in the twentieth century simula-

tions of these CMIP5 models, we are providing some

guidance to potential users who would want to use the

results of these models to assess the future impact of cli-

mate change on say the local ecology, hydrology, crop

yield in the southeastern United States.

In this paper, we have examined the surface and sub-

surface oceanic variables, the coupled feedbacks, and the

atmospheric response associated with ENSO variations in

the centennial integrations forced with the time varying
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Fig. 5 Regression of Niño 3.4

SST on DJF precipitation

anomalies normalized by the

standard deviation of the Niño

3.4 SST anomalies for

a observations (NCEP-NCAR),

b BCC-CSM1-1, c CanESM2,

d CCSM4, e CNRM-CM5,

f CSIRO-Mk3-6, g GFDL-CM3,

h GFDL-ESM2G, i GFDL-

ESM2 M, j GISS-E2-H,

k GISS-E2-R, l HadGEM2-ES,

m INM-CM4, n IPSL-CM5A-

LR, o MIROC5, p MPI-ESM-

LR, q MRI-CGCM3, and

r NorESM1-M. Units are in

millimeters per day
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Fig. 6 Linear regression of

Niño 3 SST on 200 hPa

geopotential height for

a observations (ERSSTv3b and

NCEP-NCAR reanalysis),

b BCC-CSM1-1, c CanESM2,

d CCSM4, e CNRM-CM5,

f CSIRO-Mk3-6, g GFDL-CM3,

h GFDL-ESM2G, i GFDL-

ESM2 M, j GISS-E2-H,

k GISS-E2-R, l HadGEM2-ES,

m INM-CM4, n IPSL-CM5A-

LR, o MIROC5, p MPI-ESM-

LR, q MRI-CGCM3, and

r NorESM1-M. Units are in

meters
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twentieth century emissions of the CMIP5 historical runs.

CMIP5 models are part of the latest generation of models

that will be extensively analyzed for the forthcoming IPCC

AR5. CMIP5 has followed from the CMIP3 suite of

models, which was used in IPCC AR4 (Solomon et al.

2007); there was no CMIP4.

Our analysis shows that majority of the CMIP5 models

continues to display an erroneous split-ITCZ feature, with a

cold SST bias in the equatorial oceans and an overtly active

ITCZ just south of the equator. The warm bias in the

stratiform regions of the eastern subtropical oceans is also

prominent. There was significant diversity in the CMIP5

historical simulation of the ENSO teleconnection with the

southeastern US climate. Many models produced geopo-

tential height patterns over North America uncharacteristic

of the observed ENSO teleconnection, with either the

forced variability being too strong or too weak. These

erroneous teleconnections were also reflected in the cor-

responding ENSO-forced rainfall anomalies over south-

eastern United States. However, the simulation of the mean

state of the equatorial Pacific thermocline is most of the

time well represented in the CMIP5 models, with its zonal

slope comparable to the GODAS reanalysis. The seasonal

cycle of equatorial Pacific SST is also well captured,

whereas the seasonality of the coupled feedback between

the zonal wind stress and SST shows apparent issues with

the models. There is some modest improvement in the

power spectrum of the Niño3.4 SST variations from the

CMIP3 models, in that the power has increased in several

of the models. There are however only a minority of

CMIP5 models whose ENSO power spectrum is compa-

rable to the observed spectrum. Lastly, in a majority of the

CMIP5 models, the midlatitude atmospheric response to

ENSO is quite robust and comparable to observations.

As stated earlier, improving climate models is not a

straight forward task especially in a nonlinear model with

complex feedbacks. Furthermore, many of the CMIP5

models have introduced more complexities relative to

CMIP3 by including interactions with aerosols, land ice,

biogeochemical cycle, ecosystem models that could further

accentuate the bias through coupled feedbacks. The reso-

lution of the CMIP5 models for these centennial integra-

tions has been raised by at least twofold (and even more in

some cases) compared to the CMIP3 models. The com-

munity has invested significantly over the years, targeting

many of these systematic errors through concerted efforts

like the climate process teams in the United States and is

actively considering a joint world effort (http://wcrp.

ipsl.jussieu.fr/Workshops/ModellingSummit/Documents/

FinalSummitStat_6_6.pdf; Shukla et al. 2009) to improve

climate models. Validating ENSO simulation seems to

be one of the best ways to test the fidelity of a climate

simulation given that is relatively well-understood

phenomenon, has good observational analysis, and there is

a rich historical tradition of verifying ENSO, which has

enabled a better understanding of model physics. More

specifically, the strong teleconnections of ENSO with the

southeastern United States climate makes this validation

exercise highly relevant for understanding the reliability of

the CMIP5 projections of future southeastern United States

climate.
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