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ABSTRACT

This study attempts to explain the considerable spatial heterogeneity in the observed linear trends of

monthly mean maximum and minimum temperatures (Tmax and Tmin) from station observations in the

southeastern (SE) United States (specifically Florida, Alabama, Georgia, South Carolina, and North Caro-

lina). In a majority of these station sites, the warming trends in Tmin are stronger in urban areas relative to

rural areas. The linear trends of Tmin in urban areas of the SE United States are approximately 78F century21

compared to about 5.58F century21 in rural areas. The trends in Tmax show weaker warming (or stronger

cooling) trends with irrigation, while trends in Tmin show stronger warming trends. This functionality of the

temperature trends with land features also shows seasonality, with the boreal summer season showing the

most consistent relationship in the trends of both Tmax and Tmin. This study reveals that linear trends in Tmax in

the boreal summer season show a cooling trend of about 0.58F century21 with irrigation, while the same

observing stations on an average display warming trends in Tmin of about 3.58F century21. The seasonality and

the physical consistency of these relationships with existing theories may suggest that urbanization and irri-

gation have a nonnegligible influence on the spatial heterogeneity of the surface temperature trends over the

SE United States. The study also delineates the caveats and limitations of the conclusions reached herein due

to the potential influence of perceived nonclimatic discontinuities (which incidentally could also have a sea-

sonal cycle) that have not been taken into account.

1. Introduction

The increasing global mean surface temperature trend

is regarded as strong evidence of global warming due to

increasing greenhouse gases. However, regional surface
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temperature trends may have different warming rates or

even cooling trends relating to land cover/land-use

changes (Kalnay and Cai 2003; Pielke et al. 2007; Findell

et al. 2009; McCarthy et al. 2010), such as urbanization

and irrigation (Kueppers et al. 2007; Puma and Cook

2010).

A few studies in the past have examined the observed

temperature trends in the second half of the twentieth

century over the southeastern (SE) United States

(Portmann et al. 2009; Trenberth et al. 2007; DeGaetano

and Alen 2002). It is shown that the SE United States is

one of a few regions on this planet that shows a cooling

trend over the twentieth century (Trenberth et al. 2007).

Portmann et al. (2009) find that this cooling trend is

strongest in the late spring–early summer period. The

cooling trends in the SE United States have been related

to changes in sea surface temperatures (SSTs; Robinson

et al. 2002), land–atmosphere feedback (Pan et al. 2004),

and internal dynamics (Kunkel et al. 2006). Portmann

et al. (2009) identify this ‘‘warming hole’’ as coincident

with a region of relative abundance of rainfall in the

continental United States in the May–June period,

which conforms to the well-known relationship of trends

in temperature and diurnal temperature ranges to pre-

cipitation amounts (Trenberth and Shea 2005; Zhou

et al. 2008; Dai et al. 1999; Madden and Williams 1978).

However, Portmann et al. (2009) suggest that the pres-

ence of negative temperature trends in the SE United

States warrants more than the precipitation influence

through increased evaporation and cloudiness. They

conjecture that the additional influences of an increasing

strength in the direct and indirect impact of aerosols, as

well as changes in vegetation, could also be causing these

temperatures to cool in the region. DeGaetano and

Allen (2002) examined the temperature extremes of the

twentieth century and found a strong influence of ur-

banization. They found that, consistent with the spatial

distribution of urban stations, the rate of extreme tem-

perature warming is greatest in the eastern United

States and least in the central region of the country.

While mean surface temperature is a frequent metric

for measuring climate variability and change, several

studies have argued that this method is probably in-

accurate (Christy 2002; Pielke et al. 2007; Pielke 2008;

Christy et al. 2009). The mean surface temperature

Tmean is generally obtained by averaging the maximum

and minimum surface temperatures (Tmax, Tmin; al-

though this definition of Tmean can vary in other parts of

the world), but because trends and variations in Tmax

and Tmin represent different physical processes (Christy

et al. 2009), Tmean trends may not be true representa-

tions of these physical processes. For example, linear

trends in Tmax generally represent a thicker layer of

atmospheric behavior because Tmax is usually measured

in the daytime, when the surface is relatively well cou-

pled to the overlying atmosphere through dry-adiabatic

and turbulent mixing (Pielke et al. 2007; Christy et al.

2009). However, Tmin, which usually occurs at night, is

measured when the boundary layer is shallow and de-

coupled from the rest of the atmosphere and, thereby,

represents surface characteristics more than the over-

lying atmosphere.

In addition, evidence suggests that surface tempera-

ture observation methods have not been consistent for

many stations. In particular, changes in instrument,

measurement height, and location can affect the accuracy

and continuity of temperature measurements (Pielke

et al. 2007). For example, there are substantial biases

associated with the widespread transition from liquid in

glass thermometers housed in cotton region shelters to

the electronic thermistors known as the Maximum/

Minimum Temperature System (MMTS) or, later, Nimbus.

The MMTS instrument has been shown to have a nega-

tive (cool) bias in Tmax with respect to the liquid-in-glass

instrument and a warm bias in Tmin both in side-by-side

comparisons (Wendland and Armstrong 1993; Doesken

2005) and network wide (Quayle et al. 1991; Hubbard and

Lin 2006; Menne et al. 2009). Surface temperature mea-

surements are also sensitive to changes in the immediate

environment of the instrument, including the addition or

removal of vegetation, concrete pavement, and buildings.

Land-use/land-cover changes can also affect climate

through variations in the partitioning of the available

energy between sensible and latent heat and the breakup

of precipitation between runoff, canopy storage, and

evapotranspiration, which can alter the consequent at-

mospheric feedback (Zhao et al. 2001; Feddema et al.

2005; Kalnay and Cai 2003). Irrigation—a land manage-

ment practice—is conjectured to have one of the largest

impacts on local climate (Sacks et al. 2009). The addition

of water to land increases the latent heat of evaporation

and reduces the sensible heat flux, thereby cooling the

local land surface (Bonfils and Lobell 2007, Puma and

Cook 2010). Under some conditions irrigation may also

influence cloud cover and downstream precipitation

patterns (Kueppers et al. 2007).

The urban heat island effect can also have a significant

impact on warming trends (Oke 1973; Karl et al. 1988a;

Karl and Jones 1989). The heat capacity and conduc-

tivity of building and paving materials allow for more

heat to be absorbed during the day in urban areas than in

rural areas. The heat then becomes available at night to

partially compensate for the radiational cooling from

the outgoing longwave radiation loss. Another cause of

increased heating comes from the trapping of the re-

flected solar radiation by the narrow arrangement of
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buildings (often referred as the reduced sky-view fac-

tor), which is ultimately absorbed by the walls of the

buildings in the urban areas. Additional factors such as

increased atmospheric pollutants; production of waste

heat from air conditioning, refrigeration systems, and

industrial processes; and obstruction of rural airflows by

the windward face of the built-up surfaces can also

contribute to the urban heat island effect. As a result of

these factors of the urban heat island effect, a higher

Tmin is usually observed in the urban areas relative to the

rural areas (Karl et al. 1988b).

In this study, we examine the spatial distribution of

the Tmax and Tmin surface trends of five states in the SE

United States (Florida, Alabama, Georgia, South Caro-

lina, and North Carolina) and their relationship to land-

cover heterogeneity from urbanization and irrigation.

2. Data

For the present study, we used monthly mean data

from the U.S. Historical Climatology Network version 2,

which are corrected for time of observation bias [TOB;

Baker (1975); Karl et al. (1986); Menne et al. (2009);

9641C_YYYYMM_tob.max.gz and 9641C_YYYYMM_

tob.min.gz available online at ftp://ftp.ncdc.noaa.gov/pub/

data/ushcn/v2/monthly/; hereafter USHCN2]. These data

as reported in Menne et al. (2009) were derived from the

following U.S. Daily Surface Data datasets: DSI-3200,

DSI-3206, and DSI-3210. There are 119 stations with

temperature records from January 1948 to December

2010. The TOB adjustments account for the gradual shift

in the observation time to morning over the past 50 yr,

which otherwise artificially reduces the true temperature

trends in the U.S. climate record (Karl et al. 1986). As a

consequence of the TOB adjustments, the trends of Tmax

and Tmin have increased by about 0.0158 and 0.0228C

decade21, respectively (Menne et al. 2009). In obtaining

the USHCN2, the raw data were also quality controlled

for several inconsistencies as outlined in Tables 1 and 2 of

Menne et al. (2009).

Menne et al. (2009) also correct for discontinuities

caused by changes in station location and/or in-

strumentation. They correct for these documented and

undocumented discontinuities by using the homogeniza-

tion algorithm following Menne and Williams (2009). We

deliberately avoided using the dataset with this correction

as it does not distinguish between the nonclimatic discon-

tinuities from undocumented instrument changes, station

shifts, changes in the environment surrounding the instru-

ment site, and discontinuities associated with land-cover

and -use changes. In fact, Menne et al. (2009) indicate that

the homogenization algorithm accounts for much of the

urban heat island effect addressed in Karl et al. (1988b).

We however have corrected for the systematic bias

introduced by the change from liquid-in-glass ther-

mometers (LiGs) to the MMTS. Quayle et al. (1991)

showed that this transition led to an average drop of 0.48C

in Tmax and an average rise of 0.38C for Tmin measure-

ments. Incidentally, this change in instrumentation is

rather well documented by the National Weather Service

in its B44 document (available online at www.nws.noaa.

gov/om/forms/resources/b44.doclinked). Figure 1 shows

that only about 19 of the 119 stations used in this study

have no mention of an instrument change. Furthermore,

the stations in the SE United States have undergone this

instrument change at various times since 1983, with a

significant number of them changing to MMTS in the

mid-1980s.

We compared station location with an index of land

use called the Population-Interaction Zones for Agri-

culture (PIZA), developed by the U.S. Department of

Agriculture’s Economic Research Service (USDA-ERS

2011). The PIZA is a population interaction index (PII)

that is designed to represent residential, commercial,

and industrial urban activities affecting the economic

and social environments of agriculture. The PIIs are

primary measures of the potential interaction between

nearby urban-related population and agricultural pro-

duction activities in each (5 km) grid cell. USDA-ERS

developed PIZA from PII in the 20 USDA Land Re-

source Regions (LRRs) over the continental United

States. PIZA uses a five-category classification system,

which is based on the interaction of the urban pop-

ulation with agriculture. The classifications of 1, 2, 3, 4,

and 5 represent negligible, low, medium, medium-to-

high, and high interaction, respectively. PIZA is avail-

able at 5-km grid resolution and is based on the data for

the year 2000. The thresholds for individual LRRs were

established at the 95th percentile of the distribution of

PII for 5-km grid cells in the set of totally rural tracts in

the LRR.

FIG. 1. The distribution of the year of instrument change from

LiG thermometers to the MMTS across the observing stations in

the SE United States (i.e., FL, AL, GA, SC, and NC).
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We also compared the surface temperature trends

with irrigation data. We obtained global maps of the

area equipped for irrigation at 5-min resolution (Siebert

et al. 2006). These digital global maps for irrigation

were developed by combining irrigation statistics with

geospatial information on the position and extent of

the irrigation schemes to compute the fraction of 5-arc-

minute cells equipped for irrigation, which is called

irrigation density. These data were obtained from na-

tional census surveys and from reports available from

the United Nations Food and Agricultural Organization

(FAO) through its AQUASTAT global water and ag-

riculture information system, from the World Bank, and

from other international organizations.

3. Methodology

We used the ensemble empirical mode decomposition

(EEMD; Wu and Huang 2009) to identify the trend. The

use of a simple linear regression for diagnosing tem-

perature trends is an inappropriate method (Wu et al.

2007, 2011) because trends defined by simple linear re-

gression are prescribed by parameters or functions that

are extrinsic and subjective. This approach is incorrect

when the time series is nonstationary and has nonlinear

(aperiodic) oscillations. As a consequence, estimates of

linear trends obtained from simple least squares fit or

maximum likelihood fit are sensitive to the choice of start

and end dates of the time series. Wu et al. (2011) state that

the short-term linear trends are an amalgamation of the

secular trend and fluctuations with time scales too long

to be resolved by conventional time series analysis tools.

EEMD is a data-adaptive time series analysis tool that

does not require any predetermined basis functions.

EEMD seeks to determine the intrinsic modes of oscilla-

tions in the data on the principle of local-scale separation.

EEMD is an extension on the empirical mode de-

composition (EMD; Huang et al. 1998; Huang and Wu

2008). EMD is capable of decomposing the local char-

acteristic of the temporal variations into complete sets

of near-orthogonal components called intrinsic mode

functions (IMFs). The IMFs can be thought of as basis

functions, which are determined by the time series itself

rather than predetermined kernels. Thus, it is a self-

adaptive signal processing method, which is most suited

for nonlinear and nonstationary time series. The IMFs are

obtained through a sifting process that involves identifying

local extrema (both maxima and minima) and connecting

the extrema with a cubic spline to obtain the upper and

lower envelopes. A ‘‘component’’ is obtained from the

difference of the data between the local mean of the upper

and lower bound envelopes. This two-step procedure is

repeated till the two envelopes are symmetric about zero

or within a certain tolerance to obtain the ‘‘component’’ as

the first IMF. The sifting process is deemed complete when

the residue as the difference of the IMFs and the original

data yields a monotonic function containing one internal

extremum from which no more IMFs can be extracted.

This last isolated IMF is therefore the trend. Mathemati-

cally, following Wu et al. (2011), this is

y(t) 5 �
m

i51

ci(t) 1 Rm(t) and (1)

ci(t) [ IMF 5 bi(t) cos

� ð
vi(t) dt

�
, (2)

where y(t) is the raw time series and Rm is the residue

after m IMFs have been extracted from the raw time

series. The instantaneous amplitude is obtained directly

from the IMF as the difference between the extrema and

the equilibrium value, and thereafter the frequency is

obtained from Eq. (2).

However, EMD is plagued by mode mixing, meaning

a single IMF can consist of components of widely dis-

parate scales, or a component of similar scale can reside

in different IMFs. EEMD, a noise-assisted data analysis

method, alleviates this problem. EEMD defines its IMFs

through an ensemble of trials, wherein each trial in-

volves adding Gaussian white noise to the time series.

This process enables the components of the signal in the

time series to automatically project onto proper scales of

reference established by the background white noise.

The IMFs in the EEMD are obtained exactly as in

EMD, with the difference that a white noise time series

is added to the original data series. The IMFs obtained

consist of the signal and the white noise, which are rather

noisy, but the noise in each trial (or ensemble) is dif-

ferent. This noise component in the IMF can be sub-

stantially decreased or eliminated by taking the mean of

several trials (or ensembles), thereby retaining the true

estimate of the signal in the time series.

The IMF with the linear trend in this study was iso-

lated from a 100-member EEMD. That is, the final lin-

ear trend is the outcome of averaging the corresponding

IMF from each of the 100 trials obtained from adding

Gaussian white noise to the original time series. To

compute the significance of these trends, the EEMD was

repeated 20 times for each of the time series to obtain

20 independent (ensemble averaged) estimates of the

trends. The mean trend of these twenty 100-member

EEMDs was considered significant (or physically valid)

and included in the analysis only if the standard de-

viation of the ensemble spread of the 20 estimates was

1.18F century21 or less; this value was found to be at the

upper limit of the Gaussian distribution for the observed
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station temperature trends. All others were assumed to

be outliers. The basis for this discretion stems from the

Gaussian white noise applied to the temperature time

series in EEMD. This results in the ensemble spread of

the trends from the EEMD being part of a Gaussian

distribution unless the input series to EEMD is physi-

cally unable to realize trends that fail this test. In this

case the unphysical nature of the temperature series

would arise from relatively long temporal data gaps. Of

the available 119 USHCN2 stations, 28 displayed trends

in Tmax and/or Tmin that failed this test. Therefore, the

results are shown over the remaining 91 stations dis-

tributed over the SE United States.

To compute the fitness of the linear regressions made

between the surface temperature trends against both the

PIZA grid and the irrigation data, we applied the boot-

strapping technique (McClave and Dietrich 1994; Efron

and Tibshirani 1993) to resample the slope of the least

squares fit line one million times (with replacement). In

other words, the temperature trends were shuffled with

respect to the functionality sought after (PIZA and the

irrigation index) a million times. For each of the million

scatters, a slope is obtained from which a distribution of

the slope is computed. The 5% significance level of the

slope was determined on the basis of the distribution of

this resampling.

4. Results

a. Surface Tmax and Tmin trends over the SE United
States in relation to urbanization

The linear trends of annual mean Tmin are overlaid on

the PIZA grid (Fig. 2a). In many regions the higher

warming trends are coincident with urbanized areas.

Furthermore, very few stations display cooling trends.

The annual mean Tmax trends (Fig. 2b), on the other

hand, do not show such apparent dependence on the

urbanization. This spatial heterogeneity of the trends is

objectively displayed as a scatterplot between the Tmin

and Tmax trends with the PIZA index in Figs. 3a,b, re-

spectively. A majority of the measurement sites in the

SE United States show that the slope of the warming

trends in Tmin is stronger in urban areas relative to rural

areas (Fig. 3a). Contrary to the trends in Tmin, the Tmax

trends (Fig. 3b) display a negative slope with the PIZA

index. However, the relationship is rather weak and

statistically insignificant. The fact that Tmin trends show

a dependence on the PIZA index while Tmax trends do

not reaffirms the effect of the urban heat island (Karl

et al. 1988b). In fact, we also examine the relationship

between the trends in Tmin and Tmax with the PIZA in-

dex by seasons (Table 1). It is found that the linear re-

lationship of the Tmin trends with the PIZA index

prevails in the boreal summer season, when the rela-

tionship is statistically insignificant. On the other hand,

Tmax trends consistently display an insignificant rela-

tionship with the PIZA index in all seasons.

FIG. 2. The linear trends (8F century21) from station observations of

annual mean (a) Tmin and (b) Tmax overlaid on the PIZA grid.
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b. Surface Tmax and Tmin trends over the SE United
States in relation to irrigation

Since Tmax is measured during the day, the cooling

trends in Tmax, especially in rural areas, suggest the po-

tential influence of irrigation. Irrigation, by way of wet-

ting the soil, raises evaporation during the day and

changes the Bowen ratio, which leads to apparent cooling

of the surface temperature (Kueppers et al. 2007; Sacks

et al. 2009). On the other hand, irrigation raises the heat

capacity and conductivity of the soil and, under weak

wind conditions (typically at night, when the boundary

layer decouples from the rest of the atmosphere), can

lead to warming of surface Tmin (Elsner et al. 1996).

Unlike the relationship with the PIZA index, the ir-

rigation index shows a very weak, insignificant rela-

tionship with temperature trends without aggregation

by seasons (not shown). Table 1 displays that the most

robust and consistent linear relationship between Tmin

and Tmax trends with the irrigation index occurs in the

boreal summer season. In boreal spring, Tmin has a robust

relationship with irrigation while Tmax does not. Figure 4

shows these trends in June–August (JJA) overlaid on the

irrigation area map. With some exceptions (e.g., southern

Georgia), there are cooling or weaker warming Tmax

trends in the irrigated areas of the SE United States (Fig.

4b). However, the relationship of Tmin trends with the

irrigation index is not so easily discernible (Fig. 4a). These

relationships are more objectively displayed in the scatter

between the temperature trends in JJA and the irrigation

index in Fig. 5. Consistent with Table 1, the slope is

positive for the linear regression between the Tmin trends

and the irrigation index (Fig. 5a). Similarly, the slope is

negative for the linear regression of the Tmax trends with

the irrigation index (Fig. 5b). The seasonal functionality

of these relationships attests to the known theories of

these land features. However, it may be noted that some

of the nonclimatic discontinuities prevalent in the data

may also have a seasonal cycle.

Some of the inconsistent results—like the robust rela-

tionship of Tmin trends with irrigation in spring (Table 1)—

can be surmised for any number of reasons, including

changes in cultivated crops, the amount of fertilizers

used, and irrigation practices, as well as (in more recent

times) switches to year-round cultivation and the use of

higher-N fertilizer.

5. Discussion and conclusions

Notwithstanding the outstanding issues with surface

temperature observations, our results indicate that the

observed spread of surface temperature trends over the

SE United States has some significant relationship with

urbanization and irrigation that fits our understanding of

the underlying physical processes. In theory, irrigation

would tend to reduce daytime Tmax as it reduces the

Bowen ratio. The theory further suggests that under

light wind conditions, irrigation by way of wetting the

soil raises its heat capacity and conductivity, which in-

creases the potential for raising the nighttime Tmin. On

the other hand, urbanization, in principle, will tend to

TABLE 1. The slope of the linear regression of the scatter be-

tween the temperature trends and the indices of PIZA and irriga-

tion by season. The boldface values indicate that the slope of the

regression passes the 5% significance level of the Monte Carlo test.

DJF MAM JJA SON

Tmin–PIZA 0.48 0.19 0.59 0.32

Tmax–PIZA 0.58 20.19 0.27 20.13

Tmin–irrigation 0.01 0.08 0.04 0.01

Tmax–irrigation 20.01 0.01 20.05 20.01

FIG. 3. Scatterplots of the linear trends (8F century21) over the

SE United States (i.e., FL, AL, GA, SC, and NC) of (a) Tmin and (b)

Tmax with the PIZA index. The slope and its 90% confidence level

obtained from a Monte Carlo approach are shown in the bottom-

left corner.

15 MAY 2012 M I S R A E T A L . 3615



raise the nighttime Tmin as a result of the heat island ef-

fect. These effects of urbanization and irrigation on the

temperature trends are discernible over the SE United

States in Florida, Alabama, Georgia, North Carolina, and

South Carolina.

The datasets used in the paper do carry some artifi-

cial bias since they are not homogenized (Menne and

Williams 2009). The surface temperature dataset used in

this study addresses two relatively well-documented

systematic biases, which relate to the changes in the time

of observation and the instrument. However, this may

be insufficient. As pointed out in Hubbard and Lin

(2006), the transition from LiG to MMTS often ac-

companied significant micrometeorological changes in

the immediate surroundings of the measurement site,

which are poorly documented. We have deliberately

avoided using the homogenized datasets that ameliorate

some of these artificial discontinuities as they are unable

FIG. 4. The linear trends (8F century21) for JJA from station

observations of (a) Tmin and (b) Tmax overlaid on an irrigated area

map from the FAO.

FIG. 5. Scatterplots of the linear trends (8F century21) in JJA

over the SE United States (i.e., FL, AL, GA, SC, and NC) of (a)

Tmin and (b) Tmax with the irrigation data. The slope and its 90%

confidence level obtained from a Monte Carlo approach are shown

in the top-right corner.
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to distinguish between undocumented artificial discon-

tinuities and discontinuities from land-cover and land-

use change. Furthermore, the seasonal dependence of

the relationship between temperature trends and irri-

gation and the absence of a robust relationship in the

trends of Tmax with urbanization leads us to believe

that the influence of irrigation and urbanization on the

temperature trends in the SE United States is non-

negligible. However, the reader is cautioned to consider

the potential prevalence of seasonal cycles in non-

climatic discontinuities too. It may also be noted that our

study indicates that the land-use and management fea-

tures are ‘‘second order’’ impacts on the already existent

temperature trends.
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