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Abstract—As part of the Mini-Adaptive Sampling Test Run
(MASTR) experiment in the Gulf of Mexico (GoM) region from
February to April 2024, we demonstrated real-time deterministic
and probabilistic reachability analysis and time-optimal path
planning to guide a fleet of four ocean gliders. The governing
differential equations for reachability analysis and time-optimal
path planning were numerically integrated in real-time and
forced by currents from our large-ensemble ocean forecasts. We
illustrate the real-time deterministic and probabilistic forward
reachability analyses, reachability and path planning for glider
pickups, time-optimal path planning for gliders in distress, and
planning of future glider deployments. Results show that the
actual paths of gliders were contained within our reachable set
forecasts and in accord with the dynamic reachability fronts.
Our time-optimal headings and paths also predicted real glider
motions, even for longer-range predictions of weeks to a month
duration. Reachability and time-optimal path planning forecasts
were successfully employed for glider recovery. They also enabled
exploring options for future glider deployments.

Index Terms—Ocean forecasting, sea glider, path planning,
reachability analysis, probabilistic forecasting, adaptive sampling.

I. INTRODUCTION

Optimal path planning for autonomous marine vehicles has
made major advances in the past decade [1–10]. Remote
control operations of these marine vehicles is common, from
vertical actuation with autonomous profiling floats to three-
dimensional motions with gliders and other underwater ve-
hicles [11–20]. Progress has been made with ocean gliders
and their operations in longer-term missions [21–29] leading
to a growing body of expertise and best practices [30–32].
However, due to the highly dynamic and uncertain ocean
currents [33, 34], the various hazards and biofouling [35, 36],
and the limited vehicle power, propulsion speeds, and commu-
nication [17, 37–40], model-based planning for longer-range
endurance missions at scales much larger than these of the
vehicles remains challenging. Principled planning theory and
schemes fully integrating data-assimilative model predictions

and control theory are not often used in real-time with
autonomous underwater vehicles (AUVs) at sea [6]. To our
best knowledge, it is only recently that four-dimensional op-
timal control differential field equations forced with forecasts
from four-dimensional ocean modeling systems were used to
directly control vehicles in real-time at-sea experiments. In
2016, AUVs used forecast time-series of headings computed
by time-optimal path planning differential equations forced by
ocean current forecasts in a complex coastal region. The AUVs
that followed the forecast time-optimal headings reached their
targets first, winning all races, even though they travelled
longer distances than other AUVs [41]. Differential reachabil-
ity forecasts were also issued for real floats and gliders during
the Northern Arabian Sea Circulation-Autonomous Research
(NASCar) experiment [42, 43]. The utilization of such path
planning and reachability analysis holds much promise for
multiple scientific and societal applications, from offshore
energy, fishing industry, transport, tourism, and security, to
climate, weather, ocean, and hurricane monitoring and fore-
casting, and many other applications [6, 17, 31, 44, 45].

In this work, we employ the MIT-MSEAS (Multidisci-
plinary Simulation, Estimation, and Assimilation Systems)
path planning theory and schemes [6, 46]. We demonstrate
the use of differential reachability analysis and time-optimal
path planning forecasts to help guide a fleet of four ocean
gliders in the Gulf of Mexico (GoM) region for more than two
months. This real-time effort was part of the Understanding
Gulf Ocean Systems (UGOS) program of the U.S. National
Academies of Sciences, Engineering, and Medicine.

The collaborative sea experiment, the Mini-Adaptive Sam-
pling Test Run (MASTR), occurred from February to April
2024 [47]. Using the MIT-MSEAS data-assimilative Primitive-
Equation (PE) submesoscale-to-regional-scale ocean-modeling
system [48–50], we issued daily deterministic and probabilistic
forecasts of ocean fields and derived quantities in real-time
[47, 51]. For three months, we provided multi-resolution
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ensemble forecasts. They were forced with stochastic tides and
air-sea fluxes and initialized by downscaling from two global
models with 3D PE-field perturbations using Error Subspace
Statistical Estimation (ESSE) and stochastic forcing [50, 52–
54]. We issued mutual information forecasts, optimal adaptive
sampling guidance for air and sea platforms, and reachability
and path planning forecasts for underwater vehicles. The latter
were used by four gliders that sampled the western Caribbean
Sea including the Yucatan Current and the mesoscale eddies
in the region, clearly showing the presence of subsurface
salinity maxima. The data was processed, quality-controlled,
and assimilated in real-time [47].

Because ocean gliders are relatively slow (0.3–0.5 m/s) with
respect to the prevailing currents (upwards of 1 m/s in portions
of the Yucatan Current), it can be difficult to intuitively predict
what areas are accessible to the gliders and what trajectories
are time-optimal. Examples of common questions that glider
operators ask include: Can my glider reach this location in the
coming days? Which glider could go in this region and provide
ideal measurements of specific ocean features? How can the
gliders best avoid or best leverage the strong current regions?
A glider had some damage and his nominal propulsion and
dive patterns are altered, can it still reach the original locations
or these new locations? Could it be picked up in this region?
To plan our glider operations for next year, what is feasible
and what are ideal drop-off locations to reach our scientific or
operational goals? To quantitatively answer these questions,
we built upon our rigorous level set differential equations
[6, 55] to compute exact reachability fields and time-optimal
paths for glider operations, given the uncertain future currents.
These input currents and their probabilities were the real-time
forecasts of the MSEAS-PE system.

In what follows, in section II, we describe the methodology
for reachability analyses and time-optimal path planning. In
section III, we present some of the real-time applications and
results of our theory and schemes with the four MASTR glid-
ers. We exemplify some of our deterministic and probabilistic
forward reachability analyses, reachability and path planning
for glider pickup, time-optimal path planning for gliders in
distress, and planning of future glider deployments. Finally,
we conclude in section IV.

II. METHODOLOGY

For our MASTR effort, the canonical reachability analysis
and path planning consist of predicting the locations that a
glider can reach as a function of time and the optimal paths to
its desired locations, all of which depend on the ocean currents.
Next, we introduce the notation and terminology, provide the
governing differential equations and computational schemes
that enable such predictions, and finally summarize the ocean
modeling system and glider parameters.

A. Notation and Governing Equations

Along its path, a glider is advected by the ocean currents
and we denote the current fields by V (x, t) where x is the
spatial location and t is time. For now, we assume that these

ocean currents are deterministic. The ocean glider navigates
from a given start location xs at initial time ts = 0 to a
desired final location xf . The position of the glider at time t
is denoted by Xp(t). During its mission, the glider has two
main propulsion controls along its path, (i) its time-dependent
nominal propulsion speed F (t) ∈ [0, Fmax] where Fmax is
the maximum or desired cruising speed, and (ii) its time-
dependent heading direction denoted by the unit vector ĥ(t).
For our application, the spatiotemporal scales of the ocean
currents and glider missions (tens to hundreds of km, hours to
days) are much larger than the glider scales (meters, seconds
for the local controller). For our mission planning, we thus
assume that the glider is in mechanical equilibrium at all times
and governed the kinematic ordinary differential equation that
sums the advection by the ocean currents with the propulsion
by the glider,

dXp

dt
= V (Xp(t), t) + F (t) ĥ(t) (1)

For a marine vehicle, the reachable set R(xs, t) is the set
of physical locations in the ocean that can be reached at a
time t when starting from an initial location xs at time ts and
using operationally feasible speeds and headings, the vehicle
controls. Without loss of generality, we can set ts = 0. The
reachability front ∂R(xs, t) is the boundary of the reachable
set. It is the furthest locations in the physical ocean space that
the marine vehicle can reach at a given time t if it starts at xs

at ts. Once this reachability front ∂R first reaches the desired
final location xf at some time tf , a point that remained on
∂R and reached xf corresponds to at least one time-optimal
path. We can thus expect that such time-optimal paths can be
computed by evolving a trajectory backward in time from xf

back to xs.
Mathematically, to represent the reachable set and reach-

ability front, we introduce a scalar value function ϕ(x, t)
[6, 46, 56, 57]. The reachability front ∂R is a level set of this
function (locations with a constant ϕ value or an isochrone).
Without loss of generality, we can set this constant to be
zero: the reachability front is then the zero level surface of
ϕ. It is implicitly defined as all of the points x at time t
where ϕ(x, t) = 0. Initially, the reachability front is the start
location xs. As time advances, the reachability set and front
expand due to the propulsion term F (t) ĥ(t). Hence, we define
the reachable set R as the set of locations where ϕ(x, t) is
negative (inside the front ∂R) or zero (at the front ∂R).

As derived in [58, 59], for suitable Lipschitz conditions,
the optimal evolution of ϕ(x, t) is governed by the Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE):

∂ϕ(x, t)

∂t
+ Fmax

∥∥∥∥∂ϕ∂x
∥∥∥∥+ V (x, t) · ∂ϕ

∂x
= 0

ϕ(x, t = 0) = ϕ0 (2)
where ∂ϕ

∂x denotes the generalized spatial gradient vector. To
obtain this equation, the two controls F (t) and ĥ(t) are opti-
mized using a control maximization principle and the fact that
the propulsion speed is bounded by Fmax. The optimization
results are the time-optimal control speed, F ∗(x, t) := Fmax
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(always travel at maximum cruising speed), and the time-

optimal headings, ĥ∗(x, t) := ∂ϕ
∂x

∣∣
(x,t)

∥∥∥ ∂ϕ
∂x

∣∣
(x,t)

∥∥∥−1

(always
travel in the direction normal to the reachability front). Solving
the PDE (2) for ϕ(x, t) provides the reachable set R(xs, t) and
reachability front ∂R(xs, t): the latter is the zero level set of
ϕ at any given time. In general, the PDE (2) is solved until the
first time the reachability front reaches the final destination,
i.e., until the time tf such that ϕ(xf , tf ) = 0. If this condition
does not occur after some time, it implies that the desired final
location is not reachable by that time.

Finally, starting from xf at tf , the optimal path is deter-
mined by solving the ODE (1) backward in time, using the
optimal control F ∗(x, t) = Fmax and ĥ∗(x, t) defined above.

Stochastic governing equations. In our real-time applica-
tions, we also predict the uncertainty in the ocean current
fields [51] and utilize this uncertainty to provide probabilistic
reachability and path planning forecasts. In such probabilistic
predictions, the ocean currents are denoted as V (x, t;ω)
where ω represents a specific realization or event of the
uncertain ocean evolution. The ocean currents and dynamics
are then modeled as stochastic processes [34, 52, 60] and
a particular dynamical ocean realization is a sample path.
Other variables that depend on V (x, t;ω) such as ϕ, R,
∂R, X∗

p, and ĥ∗ that we introduced in the above then also
become stochastic processes dependent on ω. Their governing
equations are then stochastic differential equations. For more
details on the stochastic reachability analysis and path plan-
ning theory and schemes, we refer to [6, 61, 62]. We issued and
used such probabilistic forecasts in real-time during MASTR
and they will be highlighted in Sect. III.

B. Computational Schemes

For the glider motions, the complete path planning as done
in [27] uses the four-dimensional ocean currents fields V (x, t)
along the yoyo patterns of the gliders in the vertical. In
this work, we instead consider an effective two-dimensional
spatial approximation where the gliders feel the vertically-
averaged ocean currents over the depth of their dives [42, 63].
This choice also mimics how glider operators commonly plan
their missions based on the vertically-averaged currents seen
by their gliders, which facilitated the collaboration among
researchers during the real-time experiment.

The PDE (2) that we employed in real-time [47] was thus
a two-dimensional in space PDE where the currents V (x, t)
are our MIT-MSEAS PE forecast of the time-dependent ocean
current fields, integrated from 0 to 1000 m depth. We initialize
ϕ(x, t) to the function ϕ0(x), the signed distance function to
a very small circle centered at the start location xs with a
radius of the order of the grid spacing, i.e.:

ϕ0(x) =

{
d(x) if x is outside the initial circle
−d(x) if x is inside the initial circle

(3)

This initialization with a radius of a few grid spacing (e.g., one
or two) enables evaluating gradients of ϕ at a desired order of
accuracy. As in acoustic propagation [64, 65], the initial starter

solution from xs to the edges of this very small circle can be
obtained analytically or approximately using eqs. (1)–(2).

For the numerical integration of the PDE (2), we use a
second-order Essentially Non-Oscillatory (ENO) scheme in
space and a second-order scheme in time [55, 57, 59]. We
note that the numerical grid and time-step used to integrate
the PDE (2) does not need to be the same as that of the ocean
modeling system used to compute V (x, t).

Once the forward reachability solution ϕ(x, t) has been
computed until the reachability front has arrived at all of
the desired destination locations or a maximum time has
passed, the integration of the PDE (2) can stop. Considering
one such desired final location xf , the first time tf when
ϕ(xf , tf ) = 0 indicates that xf can be reached by time tf . A
time-optimal trajectory and its optimal headings ĥ∗(x, t) can
then be obtained by backtracking of the ODE (1). Specifically,
the optimal path X∗

p(t) is governed by,

dX∗
p

dt
= −V (X∗

p(t), t)− Fmax ·
∂ϕ
∂x

∣∣
(X∗

p(t),t)∥∥∥ ∂ϕ
∂x

∣∣
(X∗

p(t),t)

∥∥∥ , (4)

that is solved backward in time starting from X∗
p(t = tf ) =

xf until X∗
p(0) = xs. We note that eq. (4) is the characteristic

ODE of the reachability PDE (2) [57, 59, 66, 67].

C. Ocean Modeling Forecasts and Glider Parameters

The forecast currents V (x, t) were provided by our large-
ensemble forecasting of physical ocean fields, uncertainties,
and risks using our MIT MSEAS-PE and ESSE systems
[48, 49, 53, 54, 68, 69]. These systems have been employed for
realistic simulations and fundamental research in many differ-
ent regions of the World Ocean [6, 22, 70–74]. The MSEAS-
PE can simulate (sub-)mesoscale processes over regional do-
mains with complex geometries and varied interactions using
an implicit two-way nesting/tiling scheme [48]. We exercised
many of our systems’ capabilities during MASTR, including
deterministic and ensemble initialization schemes [49, 75, 76],
tidal prediction and inversion [77], fast-marching coastal ob-
jective analysis [78], subgrid-scale models [34, 79], advanced
data assimilation [52, 80], and path planning, reachability, and
adaptive sampling [5, 6, 52, 81]. Additional details are in [51].

The gliders were piloted using a 1000 m yo-yo pattern.
Accordingly, 0–1000 m depth-averaged currents and horizon-
tal glider velocities of 40 to 50 cm/s (RU38) and 30 to
40 cm/s (SeaGlider 625 and 652 and Stommel) were used for
reachability computation, except in special situations [47] and
where indicated in the results highlighted next.

III. REAL-TIME FORECASTING FOR GLIDERS

We now highlight some of our MASTR real-time forecasts
for guiding glider motions in the dynamic western Caribbean
Sea and Gulf of Mexico during February to April 2024 [47].
The forecasts and guidance were issued on our MASTR
web-pages, WhatsApp for rapid dissemination, and Zoom
team meetings. They included reachability analyses, optimal
path planning for glider recovery and gliders in distress, and
planning of future glider deployments.
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A. Forward Reachability

Throughout the duration of MASTR, we issued daily de-
terministic reachability forecasts for each of the four gliders
operating in the Gulf of Mexico. We numerically integrated
the PDE (2) for each glider and for a set of glider maxi-
mum propulsion speeds Fmax (Sects. II-B–II-C). For normal
operations, we used the vertically-averaged MSEAS-PE ocean
current forecasts as V (x, t).

Figure 1 illustrates one of such forecast of reachability
fronts (issued on April 5, 2024), here displayed at 12-hour
intervals, with their line thickness increasing for later times.
They are overlaid on our MSEAS-PE forecast of the 0-1000 m
averaged horizontal current velocity magnitude and vectors,
shown at the temporal midpoint of the glider reachability
forecast.

(a) 30 cm/s (b) 40 cm/s

Fig. 1: Real-time forecast of forward reachability fronts (at 12-
hour intervals, increasing thickness for later times) for two different
assumed glider speeds (30 and 40 cm/s), overlaid on forecast 0-
1000 m averaged currents (m/s) for the Stommel glider, issued on
05 Apr 2024 [47].

The reachability fronts shown are the boundary of the set
of locations that the glider can reach within a certain duration,
for two different horizontal glider propulsion speed Fmax: 30
and 40 cm/s. The shape and growth of the reachable front are
driven by the glider’s horizontal propulsion and the dynamic
local currents. Generally, strong northward Loop Current in
the Yucatan Current especially on its western side near the
Mexican coastline causes the reachable fronts to spread more
quickly in that region, especially by Arrowsmith Bank and
beyond.

B. Probabilistic Forward Reachability

To account for uncertainties in forecast ocean currents,
we computed probabilistic reachability fields using our ESSE
ensemble ocean forecasts [51]. First, the reachable set was
forecast for each ensemble member (Sect. II-A): the HJB PDE
(2) was integrated for each V (x, t;ω), providing the sample
path realizations R(xs, t;ω). Then, the overall probability of
the forward reachability field was obtained by taking the union
of each member’s reachable set: at each finite-volume cell, the
number of reachable set realizations with a negative value is
counted and the total is normalized by the number of members.

(a) Day 2: Mar 24 (b) Day 3: March 25

(c) Day 4: March 26 (d) Day 5: March 27

Fig. 2: Real-time forecast of probabilistic forward reachability:
probability density function (PDF) that a location is reachable after 2,
3, 4, and 5 days by a glider of 0.3 m/s propulsion-speed, starting at
the white dot location on 00Z March 22, computed by integrating
the HJB PDE (2) for each of the MIT-MSEAS ensemble ocean
current forecasts (N=103 members). The PDF field is overlaid on
the ensemble mean current vectors forecast at t = 2.5 days.

One of such probabilistic reachability forecast (issued on
March 22, 2024) for March 22-27, 2024, is shown in Figure 2.
The colored field is the forecast probability that a spatial
location is within the reachable set of the glider on March 23,
25, and 27 (days 1, 3, and 5 of the forecast). This probability
is overlaid on the ensemble mean velocity vectors (at the
temporal midpoint of the probabilistic forecast).

These probabilistic forecasts provide additional clarity on
which regions are reachable under most current conditions,
and which regions are possibly reachable, but only under
more extreme currents (e.g., much weaker or stronger, or
much different, than normally expected currents). For the
example shown in Figure 2, the glider could likely reach many
locations to the north through the Yucatan Strait under any
current condition (within the expected statistical distribution).
However, the probability that the glider could reach locations
directly to the south near Cozumel is much lower and would
require more extreme currents (in this case, weak northward
currents).

Because the deterministic reachability predictions described
in Section III-A require that the forecasted velocity field is
accurate, this probabilistic approach allows us to quantify the
effect of uncertainty in the underlying forecast on reachability
predictions. Also, from this probability density field (PDF), we
can compute the mean, skewness, kurtosis, and other statistical
quantities of the reachability field [51] as well as probabilistic
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(a) Reachability: March 29–April 5 (b) Reachability: April 2–9 (c) Prob. reachability: April 3–5 (d) Actual track: March 29–April 4

Fig. 3: Real-time forward reachability forecasts for the pickup of glider RU38. (a–b) Reachability fronts at 12-hour intervals, issued March 29
and April 2. The assumed glider speed was 40 cm/s; (c) Probabilistic reachability forecast for April 3–5; (d) Actual track of glider RU38
from March 29 until pickup on April 4. Black dots denote the glider location at 0Z on March 29, April 2, and April 3. The star indicates
the pickup location.

risks [62] which can be most useful for glider operators.

C. Reachability and Path Planning for Glider Pickup

Reachability and path planning forecasts were also used to
assist in the pickup of gliders at the end of their missions.

For the recovery of glider RU38, we had to contend with
the competing issues of arranging for a boat and crew for
the recovery versus depleting batteries. The operators chose
to move the glider into a region of low velocity. The MSEAS
reachability forecasts were used to assess how likely the glider
could remain in the area. The forecast issued on March 29
(Fig. 3a) shows extensions to both the north and south due to
the splitting of a westward-flowing current between 18◦N and
18.5◦N as it impinges on the continental shelf. The starting
point of the glider is within the splitting current, suggesting
that the glider should head inshore. Forecasts issued on April 2
(deterministic, Fig. 3b) and April 3 (probabilistic, Fig. 3c)
show that the splitting of the westward current is still extending
the reachability to the north and south. The probabilistic
forecast shows that the glider can reach the pickup location
with a probability near 1. The actual path of glider RU38 is
shown in Fig. 3(d). It confirms the skill of the reachability
forecasts as the actual path is fully contained within them.

The MSEAS forecasting for the recovery of glider Stommel
began on April 5 (Fig. 4a). That reachability forecast issued on
April 5, 2024 indicated that it would be possible to reach the
desired pickup location by April 15 if a circuitous trajectory
were used to take advantage of a favorable forecast anticy-
clonic circulation to the west and south, along the optimal
path (Fig. 4a). To follow this optimal path, one needs to
choose vehicle headings (red arrows, Fig. 4b) that account for
the currents (blue arrows, Fig. 4b) to achieve the resultant
trajectories that lie along the optimal path (green arrows,
Fig. 4b). These optimal vehicle headings are summarized in
the polar diagram (Fig. 4c). The operator instead opted for a
more traditional straight-line path. On April 9 a new forecast
based on the new Stommel position was issued (Fig. 4d). With
this new position, the optimal path is closer to the straight line,
although the initial heading is due south instead of directly to

the pickup point, indicating that there were still some benefits
to extract from the currents. The MSEAS reachability forecast
and time-optimal path now predicted an April 17 pickup date
from that new start position, if the optimal headings were
followed. The actual track (Fig. 4e) led to an April 20 pickup.
We note that this sub-optimal path remained contained within
the forecast reachability fronts.

D. Time-Optimal Paths and Recovery for Gliders in Distress

Reachability forecasts were also provided in real time to
assist in the localization and retrieval of gliders in distress.
In these cases, the glider model was modified in real time to
represent the real glider. For example, some glider motions
were modeled predominantly due to advection with surface
currents. Other gliders had limited motions and were affected
only by currents at specific depths or were assumed to be at-
tempting station-keeping and could oppose a specified current
speed [47].

We first consider a localization example. On March 17,
SG652 began to malfunction near the Yucatán Strait (a dam-
aged wing was suspected, evidenced by difficulty controlling
roll and slower horizontal speeds). The glider was assumed
to be diving/rising between 0 and 1000 m without generating
significant horizontal thrust (effectively drifting with the cur-
rents, starting within a circle of uncertainty). This malfunction
occurred when the glider was just east of the LC entering
into the GoM and just west of the Cuban EEZ. This raised
questions as to whether the glider was in danger of (a) being
swept northward by the LC or (b) drifting into Cuban waters.

We issued a reachability forecast on March 27, 2024 ini-
tialized the last known position of SG652 and evolved the
front forward in time, using a speed of 5 cm/s (instead of the
nominal speeds of 30 to 40 cm/s) to account for uncertainty
in both the glider and forecast current speeds (Fig. 5). Over
the 6-day forecast period, we forecasted that the reachability
front was advected around the smaller, slow anticyclonic gyre,
remaining near the initial point but avoiding the Cuban waters
and only brushing the edges of the LC inflow. These results
gave the glider operators confidence that they could continue
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(a) Reachability: April 5–15 (b) Optimal path and controls: April 5–15 (c) Optimal headings: April 5–15

(d) Reachability: April 9–17 (e) Actual track: April 5–20

Fig. 4: Long-range forward reachability forecasts for the pickup of glider Stommel. (a,d) Reachability front forecasts at 12-hour intervals,
issued April 5 and April 9. The assumed glider speed was 40 cm/s; (b) Optimal path for April 5–15, with forecast current (blue), optimal
vehicle propulsion (red), and net total velocity (green) vectors, overlaid on reachability fronts; (c) Optimal heading angles for April 5–15;
(e) Actual track of Stommel from April 5 until pickup on April 20. The black dots indicate the glider location at 0Z on April 5 and April 9.
The star indicates the pickup location.

Fig. 5: Forward reachability forecast for SG652 in distress, from
March 27 to April 2, assuming a horizontal speed of 5 cm/s. Fronts
are plotted every 6 hours, and colored by time with darker, thicker
lines representing later times.

testing their malfunctioning glider in this area. After the testing
was completed, it was time to plan for the recovery of SG652.

On April 9, we provided a long-range forecast of the reach-
ability sets and time-optimal path for the planned recovery
of SG652, assuming a glider speed of 15 cm/s, near the
coast of Quintana Roo (Fig. 6a). The optimal path again takes
advantage of the anticyclonic circulation to the south and west,
arriving at the pickup point by May 2. The operators of SG652
also chose to take advantage of this circulation and were able
to also reach the pick-up point by May 2 (Fig. 6b). Again, the

(a) Reachability: April 9–May 2 (b) Actual track: April 9–May 2

Fig. 6: Long-range forward reachability forecasts for the pickup of
SG652. (a) Reachability front forecasts at 12-hour intervals, issued
April 9. The assumed glider speed was 15 cm/s; (b) Actual track of
SG652 from April 9 until pickup on May 2. The black dot indicates
the glider location at 0Z on April 9. The star indicates the pickup
location.

forecast reachability front contains the actual glider path.

E. Glider Deployment Planning

Finally, we investigated the use our reachability forecasting
to explore the feasibility of launching gliders from US waters
and traveling to the Yucatán Channel, rather than transporting
everything to Mexico. When considering locations for glider
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(a) Key West, March 20–26 (b) Tampa, March 20–26 (c) Florida Shelf, March 20–26

(d) Key West, April 2–9 (e) Tampa, April 2–9 (f) Florida Shelf, April 2–9

Fig. 7: Reachability front forecasts (black lines) every 12 hours for virtual gliders starting from several potential deployment locations. In
all cases, the assumed glider speed was 50 cm/s. (a–c) Forecasts for March 20–26; (d–f) Forecasts for April 2–9.

deployment, a cost-benefit analysis is considered between
travel time, deployment vessel cost, and glider battery life. To
initiate that study, we issued several forecasts of reachability
for virtual deployments from Key West, Tampa and offshore
from Tampa [47].

Figure 7 shows two virtual reachability forecasts issued on
March 20 and April 2, 2024 (i.e., separated by about 2 weeks).
During this period, the basic LC state is unchanged but some
smaller scale details have evolved. This is reflected in the
reachability forecasts. In both cases, the virtual glider launches
from Key West have experienced 1-2 days of helpful currents
and are within a day or two from the Yucatán Channel (with
the March 20-26 being a bit further along). The reachability
forecasts indicate that great care would be needed to ensure
that the gliders would not be swept up in the LC/Gulf Stream
and advected out of the GOM. In both cases, the Florida Shelf
releases have just barely reached the LC for an assist and are
probably about 3-4 days behind the Key West releases. Finally,
the Tampa releases are about 2-3 days away from the LC and
hence 2-3 days behind the Florida Shelf releases.

IV. CONCLUSIONS

In this paper, we described the governing differential equa-
tions to produce exact solutions for time-optimal path planning
and reachability analysis for both deterministic and probabilis-
tic conditions. We applied these equations for deterministic
and probabilistic forecasts in real-time during the MASTR
experiment [44, 47]. We demonstrated that the actual paths

of gliders in the water were contained within our reachable
set forecasts and even in accord with the dynamic evolution of
the reachability fronts. Our forecasts of time-optimal headings
and paths also explained real glider motions, even for longer-
range predictions of weeks to a month duration. Reachability
and time-optimal path planning forecasts were successfully
employed for glider recovery and gliders in distress. They also
enabled exploring options for future glider deployments We
note that these reachability forecasts, along with uncertainty
forecasts [47, 51], were not just intellectual exercises but
were used in real-time by the glider operators to achieve their
mission. This confirms that principled optimal path planning
is not only feasible in real time but is also an important tool
for operations.

Future optimal path-planning and reachability missions will
include experiments with other real autonomous ocean vehi-
cles [41, 42], more complex operations with multi-vehicles and
coordinated teams [63, 82, 83], and onboard implementations
so that vehicles can directly predict their optimal controls
[84–86]. The inclusion of hazard modeling and high altitude
drones and small satellites would be beneficial [83, 87, 88],
and could include probabilistic hazards and risks modeling
[61, 62, 89], leading to stochastic hazard-time path planning.
Finally, multi-time and multi-field reachability will be useful in
many applications including efficient capabilities for frequent
re-planning [57, 90, 91].
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