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ABSTRACT: We present a data assimilation package for use with ocean circulation models in analysis, forecasting, and sys-
tem evaluation applications. The basic functionality of the package is centered on a multivariate linear statistical estimation
for a given predicted/background ocean state, observations, and error statistics. Novel features of the package include support
for multiple covariance models, and the solution of the least squares normal equations either using the covariance matrix or
its inverse}the information matrix. The main focus of this paper, however, is on the solution of the analysis equations using
the information matrix, which offers several advantages for solving large problems efficiently. Details of the parameterization
of the inverse covariance using Markov random fields are provided and its relationship to finite-difference discretizations of
diffusion equations are pointed out. The package can assimilate a variety of observation types from both remote sensing and
in situ platforms. The performance of the data assimilation methodology implemented in the package is demonstrated with a
yearlong global ocean hindcast with a 1/48 ocean model. The code is implemented in modern Fortran, supports distributed
memory, shared memory, multicore architectures, and uses climate and forecasts compliant Network Common Data Form
for input/output. The package is freely available with an open source license from www.tendral.com/tsis/.

KEYWORDS: Ocean circulation; Hindcasts; Operational forecasting; Data assimilation; Numerical weather prediction/
forecasting

1. Introduction

With the rapid development and deployment of observing
systems unprecedented amount of information is becoming
available for oceanic process studies, ocean-state forecasting,
and climate monitoring. The new data encompass measure-
ments that sample the ocean at different spatial and temporal
scales and are complemented by a fast-growing capacity of
numerical models to simulate ocean processes across scales
(Morrow et al. 2019; Fox-Kemper et al. 2019). To make use of
these sources of information, it is often useful to combine
them and derive estimates of the ocean state that are regular
in spatial and temporal coverage, and simultaneously consis-
tent with both measurements and models. Data assimilation,
essentially methodologies to optimally merge information
from different sources, has emerged as a powerful tool to inte-
grate vast amounts of data in recent decades (Moore et al.
2019; Heimbach et al. 2019). Although data assimilation algo-
rithms are relatively well established and many datasets are
routinely available, using them for a particular task can prove
to be a rather complicated undertaking. General purpose
tools such as the Data Assimilation Research Testbed
(DART; Anderson et al. 2009), the Data Interpolating Varia-
tional Analysis (DIVA; Troupin et al. 2012), and others [e.g.,

the Joint Effort for Data assimilation Integration (JEDI)] can
greatly facilitate data assimilation for both research and opera-
tional use. In this paper, we introduce another such tool}version
2.0 of the open source statistical interpolation toolbox called
Tendral Statistical Interpolation System (T-SIS).1 The T-SIS ver-
sion 2 presented here is significantly improved over T-SIS 1.0
(Halliwell et al. 2014) and can now handle additional algorithmic
intricacies and complexities of observational data and models
required to produce an integrated analysis.

The general problem of fusing measurements with a prior
or background field leads to an overdetermined system of
equations which is usually solved by imposing an optimality
condition such as the least squares criterion. The solution is
obtained either as an optimal estimator in a probabilistic
framework or equivalently the combined errors of the overde-
termined system are cast in quadratic form and standard con-
vex optimization techniques are used to find the optimal
solution (Crassidis and Junkins 2004; Kalnay 2002; Wunsch
1996). In both approaches, the solution procedure involves
mathematical operations such as inversions and decomposi-
tion and factorization of the error covariance matrix. Further-
more, for an optimal estimation, the uncertainty in the state
encoded by the covariance matrix has to be propagated
through the process model which is usually nonlinear in the
case of ocean models. The uncertainty covariance matrix is
impractically large for real problems, and thus, various
approximations and parameterizations have been used for
applications each emphasizing different scales of the error
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process and/or computational efficiency (Oke et al. 2002;
Cummings 2005; Counillon and Bertino 2009).

Earlier versions of the package (T-SIS 1.0) presented
herein implemented a classic multivariate optimal interpola-
tion approach in which the large global error covariance
matrix is split into smaller submatrices. The submatrices are
built from a relatively small subset of local observations mak-
ing the matrix sizes small and inversions feasible. Two well-
known drawbacks of this method, the potential loss of coher-
ence between large and small scales of the analysis due the
partitioning the observations and the O(n3) computational
scaling with, the number of observations n prompted a search
for alternative methods. One particular approach for effi-
ciently solving a large analysis problem is by modeling the
prior/background error process as a Gauss Markov random
field (GMRF) which leads to a sparse inverse of the error
covariance matrix often referred to as the information or pre-
cision matrix.2 The sparse representation of the global error
covariance matrix can result in significant savings in computa-
tional time and memory burden without loss of accuracy (Rue
and Held 2005). The analysis using the information matrix
addresses the drawbacks mentioned above, it uses all of the
data simultaneously and has a favorable scaling with the num-
ber of observations, and in this respect is similar to 3D-Var
type of analysis. This approach was introduced for ocean data
assimilation by Chin et al. (1999, 2002) and was found to be
comparable in performance to more widely used schemes in a
series of twin experiments (Srinivasan et al. 2011). Despite
this initial promise, the methodology has not seen much use in
either ocean forecasting or hindcasting applications. Recently,
however, this technique was implemented in T-SIS 2.0 and it is
presently being used operationally for relatively fine horizon-
tal-resolution hindcasting and forecasting applications.

The purpose of this paper is to systematically document the
capabilities of the latest T-SIS 2.0 package with an emphasis
on the information matrix based analysis scheme and, further-
more, to demonstrate its performance in a global hindcasting
application. In the following, a brief background and technical
details of the analysis methods implemented in the T-SIS
package are first presented in sections 2 and 3. In section 4,
the performance of the various covariance models are then
compared in simple test problems. In section 5, practical
implementation details, observation types, and quality control
are discussed. In section 6, the performance of these choices
are then illustrated with a global hindcasting application simi-
lar in complexity and scope to applications used in many
research and operational centers. This is followed by a discus-
sion in section 7 to conclude the paper.

2. Statistical interpolation3

We suppose that the equations for the state xt and measure-
ment vectors yt be represented as

xt 5 ft xt21( ) 1 emodel
t , (1)

yt 5 Hxt 1 edatat , (2)

where the spatially discretized state vector contains all
dynamically independent prognostic variables at time step t.
The function ft is a representation of a computation of a single
time step by the ocean model and emodel is the aggregate
uncertainty (both physical and numerical) in the model. We also
make the convenient (but optional) assumption that the operator
Ht relates the state xt to observations by linear combinations.
The errors in the models and observations are as yet of unknown
character. The actual observed values of the yt are then used to
constrain the ocean models dynamic trajectory toward the
observations. Adopting a classical least squares approach, a
cost function JN is minimized with respect to the model states
x0…xn:

JN 5
��xo 2 xdo

��
L2
o
1
∑N

j51

��xj 2 fj xj21( )
��
M2

j
1

��ydj 2 Hjxj
��
N2

j

[ ]
:

(3)

The positive definite matrices L, M, and N are weighting
matrices, which are quantitative measures of our belief in the
initial condition, the dynamical model, and the observations
(Jazwinski 1970). The indices j represent time and o denotes
initial conditions, respectively. The least squares formulation
above is time dependent in that the optimal values of the
weighting matrices depend on the time index j in (3) above. In
practice, the above equation is solved in a recursive manner;
that is, JN11 is estimated in terms of the observations yn11

using the current observations as a forcing term. The time
recursion can then be expressed as

x
f
t 5 ft x

a
t21

( )
, (4)

xat 5 x
f
t 1 Kt yt 2 Htx

t
t

( )
, (5)

where the superscript f denotes forecast values and the matrix
K is referred to as the filter gain. To define an optimal filter
gain, the weighting matrices L, M, and N are treated as inver-
ses of covariance matrices P, Q, and R of errors in initial con-
dition, dynamical model, and observations, respectively, and
each with well-defined statistics.

There are numerous ways to represent the solution to this
problem, two solutions given by the normal equations for this
problems are (Kalnay 2002)

Kt 5 PtH
T
t HtPtH

T
t 1 Rt

( )21
, (6)

2 The term information matrix is used in the signal/image proc-
essing community, while the term precision matrix is used in statis-
tics. The information matrix terminology is used in this paper.

3 Statistical interpolation is very wide subject used across many
different fields. Here it discussed within the limited context of
assimilation of data into numerical ocean models.
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Kt5 P21
t 1HT

t R
21
t Ht

( )21
HT

t R
21
t : (7)

The optimal gain requires the use of nonstationary error
covariance matrix Pt in the above equations. For linear sys-
tems with Gaussian statistics, the Kalman filter recursion of
the error covariance matrix provides the statistically optimal
weights for (3). For nonlinear systems such as ocean data
assimilation problems considered here, two approximate
forms of the Kalman filter are generally used. The first of
these uses the extended Kalman filter approach by linearizing
the nonlinear model. The error covariance, Pa

t21, is then prop-
agated as

P
f
t 5 FtP

a
t21F

T
t 1 Qt, (8)

Pa
t 5 I 2 KtHt( )Pf

t I 2 KtHt( )T 1 KtRtK
T
t , (9)

where the matrix Ft 5 ft=x x
q
t21

( )
is the linearized model

about the most recent estimate (Crassidis and Junkins 2004)
and Qt is the model error covariance matrix. Here only the
second moment of the state probability distribution is propa-
gated, which can lead to closure issues.

A far more popular methodology for nonlinear problems is
the ensemble Kalman filter introduced by Evensen (1994,
2006) and its variants. The ensemble Kalman filter deals
with nonlinearity during the forecast step by working with
ensemble of randomly generated states. Thus, it makes no
restrictive assumptions during the state uncertainty forecast
step, but there is an implicit Gaussian assumption at the state
update step. Despite this compromise, the ensemble Kalman
filter works well for many applications as shown by Evensen
(2003).

Regardless of the methodology used, time recursion of
the forecast error covariance matrix can be computationally
orders of magnitude more costly than integrating the
numerical model itself. Therefore, for many applications,
the time recursion of the forecast error covariance matrix is
neglected and, instead, a stationary error covariance matrix
is used. Even without the time recursion, the error covari-
ance matrices appearing in the normal Eqs. (6) and (7) are
still too large to operate upon directly and therefore have to
be further simplified for practical use. These simplifications
must generate a symmetric positive definite matrix, and
additionally it is often required to have properties such as
smoothness, e-folding and should enforce balance proper-
ties such as geostrophy. Many different approximations of
the error covariance matrix are currently used in opera-
tional systems (Martin et al. 2015). The T-SIS 2.0 package
implements some of these approximations and introduces
an additional one based on GMRF models for the error pro-
cess. These are described in the next section. We do not
address time recursion of the error covariance in this paper
but mention in passing that with the inclusion of the GMRF
based parameterization, T-SIS 2.0 allows for efficient time
recursion of the error covariance matrix using either of the
methods described above.

3. Modeling of the forecast error covariance matrix

The T-SIS 1.0 package initially performed the analysis based
on Eq. (6) using a classic parameterization of the forecast error
covariance, which was then augmented with a capability to use
covariances derived from a set of model states or a set of
mode vectors. More recently, in T-SIS 2.0, an analysis, which
uses Eq. (7) and requires the inverse of the covariance matrix,
was implemented using the GMRF paradigm. In this section,
we first briefly describe the classic methods of representing the
forecast error covariance (also available in T-SIS 2.0), followed
by a more detailed discussion of the information matrix based
method since it is not as common as the other methods.

a. Covariance using Gaussian type correlation functions
or model states

T-SIS 2.0 retains the classic approach wherein the back-
ground error covariance Pf is parameterized as a product of
background error variances and correlations, modeled using
second-order autoregressive functions (SOAR):

Pf 5 D1=2CD1=2, (10)

Ch 5 1 1 sh( )exp 2sh( ), (11)

Cy 5 1 1 sy( )exp 2sy( ), (12)

C 5 Ch*Cy; (13)

sh and sy are the normalized horizontal and vertical correlations
scales, C is a matrix of correlations, and D is a diagonal matrix
of variances (Cummings 2005; Daley 1991; Kalnay 2002).

Alternatively, instead of analytical correlation functions a
set of model states can be used to estimate the background
error covariance matrix as

Pf 5
1

M 2 1

∑M
m51

xfm 2 xf
( )

xfm 2 xf
( )T

, (14)

where x
f
m, m 5 1, … , M, are the M model states (Counillon

and Bertino 2009).
The states used for this purpose can be sampled from a

long integration of the free running model or from data assim-
ilated model runs when available. Sampling from a set of data
assimilated model states have been shown to provide better
estimates of the background covariance (Brasseur 2006;
Panteleev et al. 2015). Anomalies for a given analysis time are
calculated with respect to a running mean in order to estimate
the error in the ocean state at a given period of the year for a
chosen forecast horizon allowing for some time dependency.
In typical use, the anomaly calculation retains the frequencies
corresponding to ocean structures which are to be corrected
by the data assimilation. The calculation of anomalies is
implemented as part of the package and allows on-the-fly
computation of anomalies for a given analysis time from a set
of time-indexed states.
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To compute an analysis, Eq. (6) is applied for each grid
point using a subset of observations that fall within a few cor-
relation scales (localization radius). The large global error
covariance matrix in 6 is thus split into many local ones to
make the matrix inversion and multiplication manageable.
Essentially, this algorithm requires the solution of an n 3 n
linear system for which the operation count and memory
requirements scale as O(n3) and O(n2), respectively. This
implies that the above algorithm can be slow for large correla-
tion scales or dense datasets. However, these computations
can be done in parallel and good performance is obtained by
computing the analysis for each grid point separately on mul-
tiple processing elements. The analysis with analytical covari-
ance models is generally faster compared to analysis with
covariance derived from a set of model states, particularly for
larger model state sizes, due to the need to load, store and
operate on several model states at once. For many applica-
tions, good improvements in performance can be obtained by
replacing the model states by a smaller number of mode vec-
tors or empirical orthogonal functions (EOFs) to reduce
input/output (I/O) and memory requirements and by comput-
ing the analysis in ensemble space. The transformation to
ensemble space replaces the solution of the n 3 n system with
a p 3 p system, where p is number of states or mode vectors
and is computationally faster when p,, n. T-SIS 2.0 can com-
pute the analysis in both observation and ensemble space and
the choice is usually application dependent.

b. Information matrix using Gaussian Markov
random fields

The aforementioned computational bottleneck can be
greatly improved by replacing the covariance matrix by a
sparse approximation of its inverse, the information matrix.
Such a compact representation of the information matrix can
be realized by spatial regression (Chin et al. 1999). This
approach has it roots in the concept of conditional autoregres-
sion introduced by Besag (1974) for defining statistical models
of a spatially distributed random vector. Each element of the
random process is specified conditionally on values of a few
neighbors and such a process is known as a Markov random
field (MRF). Formally, an MRF random vector x5 (x1,… xn)

T

defined over a set of discrete locations such as a grid or lattice
has a Markov property: an element xi at a grid location I is
conditionally independent from all other elements given the
values of neighbors of i. This set of neighbors, or neighbor-
hood, formalizes the notion of “locality” by specifying the
extent of direct interactions among the grid elements (e.g., dis-
cretized forms of partial differential “balance” equations).
This notion of locality is in contrast to the “localization” pro-
cedure in section 3a or as in Anderson (2012) that removes
long-distance covariances in order to make the analysis meth-
ods practical. The information matrix is local, but its inverse
the covariance matrix is not necessarily local and preserves
and smoothly tapers long distance correlations (Rue and
Tjelmeland 2002).

The specific form of MRF relevant here is the GMRF,
whose random vector has a jointly Gaussian distribution, and

the conditional distribution of xi given the values of its neigh-
bors is

xi ∼ N ∑
j∈di

aijxj,b2
i

( )
, (15)

where di is the set of neighbors for particular location i. (Con-
ventionally, the neighbor set di does not include i.) Modeling
with a GMRF consists of specifying the neighborhood system
di with its interaction parameters aij and the error variances
b2
i . It can be shown (Rue and Held 2005) that Eq. (15) holds

if and only if the joint distribution of x is Gaussian and of the
form

p x( ) 5 2p( )2n=2
L| |1=2exp 2

1
2
xTLx

{ }
, (16)

where L is the information matrix (inverse of the covariance
matrix)

Lij 5

1
b2
i

if j 5 i

aij if j ∈ di
0 otherwise

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (17)

The conditional distribution of xi in Eq. (15) has the form
of a Gaussian linear regression, in which the extent
(“cardinality”) of the neighbor set di determines the order of
this regression. The cardinality of the neighborhood in
GMRF also determines the sparsity of the information matrix
L whose diagonal elements are the conditional precisions 1=b2

j

and off-diagonal elements are the regression parameters aij.
The regression parameters encode the correlations spanning
all distances and represent the covariance matrix of x in a
numerically efficient, sparse form. For example, if the interac-
tion among the elements of x can be modeled with a system of
first-order partial difference equations (over a two- or three-
dimensional grid), then the neighborhood would consists only
of the direct/nearest neighbors and the resulting L is a nested
tridiagonal matrix. Such sparseness in the information matrix
enables significant computational advantages.

To determine the elements of the information matrix, a
zero-mean process with identity covariance matrix is first
defined as z ∼N 0, I( ) and then x is obtained through the
inverse transform z5 Gx. When x is Gaussian with zero mean,
the covariance is P 5 (GTG)21, where G is the square root
information matrix. A simple example is the AR(1) model on
a regular line for which G and the corresponding information
matrix L are of the form:

C 5

21 1 0 … 0

0 21 1 . .
. ..

.

..

. . .
. . .

. . .
.

0
0 … 0 21 21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L 5

2 21 0 … 0

21 2 21 . .
. ..

.

0 . .
. . .

. . .
.

0
..
. . .

.
21 2 21

0 … 0 21 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
: (18)

Another insightful view of the GMRF is as a discretized
solution of stochastic differential equation. Consider the equa-
tion x/s 5 d, where d is a white noise process corresponding
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to the AR(1) model above. Using forward differences for reg-
ularly spaced locations (Ds 5 si11–si), x/s 5 [x(si11) 2 x(si)]/
Ds. The discretization implies that ds21Cx ∼N 0,ds22I

( )
, which

has a density proportional to exp[21/(2Ds2)](Gx)T(Gx), or that
x ∼N 0, s22L

( )
. The one-dimensional example above can be

extended to grids of arbitrary dimensions by extending the
definition of G to contain one row for every pair of adjacent
nodes in a d-dimensional grid. In the case of uniform grids,
this leads to a simple structure for G 5 GTG, namely,

Li,j 5
ni| | if i 5 j
21 if i ∼ j
0 otherwise

,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

where |ni| is the number of neighbors of a node i, for example,
|ni| 5 4 for nonboundary nodes of 2D and |ni| 5 6 in 3D and
so on. Higher-order GMRFs can be constructed by consider-
ing higher-order differences in the definition of the G opera-
tor. The elements for the second- and higher-order GMRFs
are found by convolving the first-order GMRF with itself
(Lindgren et al. 2011). In both cases, the information matrix is
sparse and with n 1 1 1 N (homogeneous case) or nN (inho-
mogeneous) elements replacing the N2 elements in the covari-
ance matrix, where n is the size of the numerical Laplacian or
biharmonic stencil.

For our purposes the computational grid used by the ocean
model defines a set of nodes i, following Chin et al. (1999), we
write the elements of the error vector using generalized
regression as

ej 5
∑
i∈Z

aijej21 1 nj, (20)

where aij is inhomogeneous, Z a multidimensional, noncausal
index set used to capture conditional dependence, and nj are
zero-mean Gaussian distributed random errors with variance
b2
j . These spatial regression coefficients can be related to the

inverse of the covariance matrix or the information matrix by
writing the above equation as a matrix operator Gk on the
error vector:

Ckek 5 d, (21)

where d denotes a zero mean process with identity matrix as
covariance. Gk is sparse with the diagonal elements given by
1/bj and near diagonal elements}aij/bj, i ∈ Z for each row j.
Sparseness of G depends on the size of the index set Z. Multi-
variate relationships between geopotential and velocity com-
ponents can be encoded by the regression operator and the
corresponding information matrix can be obtained by squar-
ing the regression operator as above (Chin et al. 1999). Once
the L matrix is available, the optimal filter gain in Eq. (7) can
then be obtained as L21

a HN where La 5 Lf 1 HTNH and N 5

R21. In practice, the gain is not explicitly computed but
HN[y 2 H(x)] is first computed and then inverted with the
sparse La usually with 20 iterations of a preconditioned conju-
gate gradient algorithm. This algorithm has linear scaling with
the analysis grid size.

4. Examples of analysis with covariance and
information matrices

In this section, we provide some examples of analysis com-
puted using covariance and information matrices with Eqs.
(6) and (7), respectively. First, we use along-track sea level
anomaly (SLA) data from altimeters to estimate corrections
to the background sea surface height (SSH) field from a 1/168
model of the Gulf of Mexico (Fig. 1). The altimeter signal in
the Gulf of Mexico is quite strong due to the Loop Current
and is thus well suited for this illustrative example (Srinivasan
et al. 2011). The ratio of the observations to background var-
iances is set to 5 in the examples shown in Fig. 2.

Two different analyses are computed for this illustration
using both covariance and information matrix methods (Fig.
2). The analysis based on the covariance matrix and Eq. (6)
were computed using two different correlation scales, one of
150 km and the other of 300 km corresponding to roughly 3
and 5 times the Rossby deformation radius of the first baro-
clinic mode. For the information matrix based method, we use
both first- and second-order information matrices as defined in
the previous section. The first-order model uses four nearest

FIG. 1. (top) The background SSH field, (bottom) along-track
SLA observations, and drifter velocities used to infer corrections
to the background.
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neighbors in the grid along cardinal directions corresponding
to a Laplacian stencil while the second-order model uses 12
neighbors and corresponds to a biharmonic stencil. First- and
second-order L take the form

L1 5
21

21 4 21
21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ L2 5

1
2 28 2

1 28 20 28 1
2 28 2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
:

The corrections computed using the first-order information
matrix are both smoother and extend further than the corrections

with the second order (top two rows of first column, Fig. 2). The
first-order GMRF (Laplacian stencil) is built with first-order
increments (section 3b) while second-order (biharmonic stencil)
is built with second-order increments. The error vector which is
written as a regression is expected to be smoother with bihar-
monic stencil (more neighbors) than a Laplacian stencil (less
neighbors). However, since the analysis is computed by inverting
the information matrix we get smoother results for the first-order
GMRF. This can be counter intuitive when looking at it from
first-order versus second-order GMRF perspective. However,
the information matrix is a “roughening” operator and its inverse

FIG. 2. (top),(middle) Corrections to the SSH background estimated using Eqs. (6) and (7). Two different neighbor-
hood systems (Laplacian and biharmonic stencils) were used in the information matrix in the top row. For comparison,
corrections estimated using SOAR functions with correlation scales (localization radius) of 300 and 150 km are shown
in the middle row. (bottom) Multivariate surface height corrections estimated from the drifter observations in Fig. 1.
(bottom left) Corrections derived from the information matrix can be compared with (bottom right) corrections from
a classic multivariate OI. The background state velocity was assumed to be zero over the domain.
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will act as a smoothing operator. Lindgren et al. (2011) show that
the first-order model approximates a Gaussian process with
covariance, cov

(
xijxi′ j′

)
5K0 kr( ), where K0 is the modified Bes-

sel function of the second kind, k is a constant and r is the dis-
tance between xij and xi′ j′ with the spatial range parameter
r → ‘. The second-order information matrix corresponds to the
widely used second-order autoregressive model with covariance,
krK1(kr), equivalent to a thin-plate spline (Rue and Held 2005).
Paciorek (2013) compared the eigenstructure and smoothing ker-
nels of both the first- and second-order models above and finds
that the first-order model spreads the corrections farther than the
second-order model similar to the results presented here. The
MRF model structure and parameterization are fundamental,
but errors or inaccuracies in the iterative inversion of the infor-
mation matrix can also play a significant practical role. For exam-
ple, incomplete iterations could yield smoother fields than the
optimal solution. Therefore, the solutions were examined for
both the standard 20 iterations and also for 100 iterations. There
were no significant difference in this case. For comparison, the
corrections computed using SOAR functions with a large corre-
lation scale produces a smoother estimate than the one with the
small correlation scale as more observations are used for each
grid point (middle row, Fig. 2). Interestingly, these corrections
(with correlation scales of 150 and 300 km) are very similar to
the corrections computed with the biharmonic and Laplacian
stencil based information matrices suggesting that the informa-
tion matrix defined by strictly local differential operators repre-
sents covariance structure over a much larger region in space
efficiently.

Multivariate corrections for surface height computed from
drifter velocity observations are shown in the bottom row. A
simple geostrophic balancing constraint written in the form of
a regression operator is used to define the information matrix
for this analysis (Chin et al. 1999). As seen in Fig. 2, this
approach results in an updates which are almost identical to
ones calculated using classic multivariate optimal interpola-
tion schemes as in Daley (1991) or Cummings (2005). Only
velocity observations were used to compute surface height
increments in this illustrative example. In typical usage, all of
these different observations are combined for a joint estimate.

Overall, the corrections computed for the two different
cases and analysis methods are, as expected, very similar and
suggest that either of these methods can be used with similar
impact for actual applications. However, there are some clear
advantages to using the information matrix method and Eq.
(7). First, a global analysis is computed and there is no need
for partitioning the data into subsets which makes it possible
to maintain coherence between large and small scales in the
analysis without out resorting explicit smoothing. Second, the

analysis computation and storage cost scale linearly with the
analysis grid and observation size compared to the cubic and
quadratic increase for the implementations using Eq. (6)
(Table 1). Furthermore, the commonly used Laplacian and
biharmonic stencils require matrix-vector product with at
most a 5 3 5 footprint, which is usually less than the buffer or
halo regions for tiles in domain decomposed ocean models.
Therefore, the GMRF based analysis can be implemented as
a subroutine within the ocean model with relatively less effort
and thereby making long hindcasts more efficient and opens
up the possibility of time recursion of the information matrix
through the numerical model.

5. Practical implementation

The theoretical basis of the assimilation scheme used to
produce the spatial analysis was described and illustrated in
the previous sections. In this section, we provide some details
on the practical implementation of the T-SIS 2.0 ocean data
assimilation package.

a. Error variances

All schemes implemented in the package require the specifi-
cation of background/forecast and observation error variances
which vary with analysis variable, observation types, depth, and
location. In the absence of a time history of forecast errors or
statistics of innovations or increments, background error varian-
ces are specified using climatology. Climatological variability
either from model runs or gridded climatology based on obser-
vations can be interpolated in space and time and scaled by a
factor and specified as background variance. Climatological var-
iability derived from data assimilative model run is provided as
part of the package for this purpose. This can then be replaced
by actual error statistics once sufficient time history of errors
are built up using one of the many methods in the literature
(e.g., Hollingsworth and Lönnberg 1986). Error covariances are
derived directly from the ensemble of model states when the
ensemble version is used. These covariances are scaled to
reduce the magnitude of the error variances as errors of the
days are expected to be generally smaller than the climatologi-
cal variability. The observation error covariance matrix is a sum
of measurement error and representativity error. Representa-
tivity errors are implemented here as a function of the model
resolution and observation networks. The observation errors
are usually assumed to be uncorrelated.

b. Observation preprocessing and quality control

Any variable directly related to the state vector (velocity
components, surface height, temperature, salinity) can be

TABLE 1. Sample analysis times for different schemes as implemented in the T-SIS 2.0.

Method Observation count Grid size Time

Covariance matrix; Eq. (6) 200 000 1500 3 1100 4 min
Information matrix; Eq. (7) 200 000 1500 3 1100 45 s
Covariance matrix; Eq. (6) 1 000 000 1500 3 1100 30 min
Information matrix; Eq. (7) 1 000 000 1500 3 1100 1 min
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assimilated relatively easily using T-SIS 2.0. At present, the
package can assimilate a variety of remotely sensed and in
situ observations available from different sources (Table 2).
Along-track SLA from multiple altimeters can be pooled and
assimilated. Alternatively, maps of SLA can also be assimi-
lated. In all cases the anomalies are converted into a surface
height by adding a mean dynamic topography usually derived
from long model simulations. There are numerous sources of
sea surface temperature (SST) data each with its own biases
and errors. For many applications, gridded fields of SST can
simplify the need to keep track of errors and biases of each
independent source. Two such products, the 1/48 optimally
interpolated SST from National Oceanic and Atmospheric
Administration (NOAA) and the 10 km product from the
Naval Oceanographic Office (NAVO) are supported as
default options in the package. Additional products can be
easily added as required. Alternatively, composite satellite
retrievals with error estimates (Piollei et al. 2010) project and
in situ SST observations (Xu and Ignatov 2014) can be used
for SST assimilation. Temperature and salinity profiles from
sources in Table 2 can be assimilated. Support programs to
convert profiles to various vertical coordinates, to extend pro-
files from the last observed level to the bottom, to resample
the vertical profiles and statistical regression coefficients to
estimate salinity from observed temperature profiles are avail-
able as part of the package. Velocity data from sources in
(Table 2) can also be assimilated.

Before assimilation, all observations that are available for
analysis for a particular time/date are preprocessed and col-
lected in an intermediate observations file. Assimilated obser-
vations are typically obtained from quality controlled sources
for most applications other than operational applications
using raw data from the Global Telecommunication System
(GTS). Even so, all observations undergo a simple quality
control procedure before being included in the observations
file. These include gross error checks such as physical range
checks, land–sea mismatch checks, data–time checks, and
checks against climatology and forecast fields. Observations
differing by more than a user specified factor from the clima-
tological standard deviation are either not assimilated or
moderated.

c. Vertical coordinates for analysis and analysis variables

The package was originally developed for use with the
Hybrid Coordinate Ocean Model (HYCOM) and supports
direct analysis in generalized vertical coordinates. The state
vector used is a subset of the prognostic variables of HYCOM,
specifically layer thickness, layer temperature, layer salinity,
the diagnosed SSH anomaly, and the horizontal velocity com-
ponents. To optimize system performance for the Lagrangian
vertical coordinate system, observations are first remapped
onto the hybrid isopycnal–sigma–z vertical coordinate system
prior to assimilation. The analysis procedure then updates
each layer independently in a vertically decoupled manner.
For temperature-only profiles, corresponding salinity profiles
are generated from climatological temperature–salinity (T–S)
relationships to permit layerization (Thacker 2008). In the
pressure layers both temperature and salinity are corrected. In
isopycnal layers, thickness either temperature or salinity is cor-
rected with the other diagnosed from the equation of state.
Profile data are first assimilated to obtain an intermediate state
which is then corrected with altimeter data. A layerized ver-
sion of the Cooper and Haines (1996) procedure (described in
the appendix) is used to adjust the layer thicknesses in the iso-
pycnic-coordinate interior in response to SSH anomaly inno-
vations. Multivariate correlations are used to compute velocity
corrections from layer thickness corrections and vice versa.

Alternatively, the analysis can be computed in standard
physical coordinates with pressure as the vertical coordinate.
In this case, the state vector consists of temperature, salinity
and dynamic height computed from temperature and salinity.
All variables are analyzed simultaneously in three dimen-
sions. The analysis in layered coordinates is computationally
faster but the quality of the analysis appears to be similar in
limited tests. Further systematic comparisons are required to
fully evaluate these options.

6. An example hindcast application

We proceed now to illustrate the performance of the infor-
mation matrix based scheme with a global 1/48 hindcast appli-
cation with HYCOM.

TABLE 2. Ocean observations that have been used with TSIS 2.0.

No. Observation Provider/source Type

1 Sea level anomalies (SLA) CLS marine.copernicus.eu Along-track and gridded maps
2 Foundation temperature/SST OISST (NOAA) and K10-SST (NAVO) Gridded L4 products
3 In situ SST NOAA-IQUAM Point
4 In situ GTS Point
5 Argo T/S U.S. GODAE Point
6 XBT GTS and offshore industry Point
7 T/S from moored buoys GTS Point
8 Surface salinity maps marine.copernicus.eu Gridded L4 products
9 Drifter velocities GDP and offshore industry Point
10 HF-radar velocities NOAA and offshore industry Gridded maps
11 Vessel mounted ADCP data Offshore industry Velocity profiles
12 ROCIS surface velocity data Offshore industry Surface velocity along flight tracks
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a. System configuration

1) THE 1/4° GLOBAL HYCOM

The HYCOM model, its capabilities and reference simula-
tions are detailed in (Bleck 2002; Chassignet et al. 2003;
Halliwell 2004). The implementation of HYCOM used here is
similar to configurations used in other HYCOM based opera-
tional centers such as Naval Research Laboratory and
National Centers for Environmental Prediction (Chassignet
et al. 2009). For this global application, a composite horizontal
grid consisting of a uniform latitude–longitude grid between
788 and 608S, a Mercator grid between 608S and 478N with a
1/48 grid spacing, and a curvilinear rotated pole grid north of
478N is used. The resolution at the equator is approximately
28 km and reduces to less than 10 km at high latitudes. The
model bathymetry is a combination of global 1-arc-min ocean
depth and land elevation from the U.S. National Geophysical
Data Center (ETOPO1; https://www.ngdc.noaa.gov) and the
15-arc-s General Bathymetric Chart of the Oceans (GEBCO;
https://www.gebco.net/data_and_products/gridded_bathymetry_
data/) 2020 grid with local corrections in the Indian Ocean, Gulf
of Mexico, and Brazil Current regions.

In the vertical, the model is configured with 32 hybrid (pres-
sure–sigma–isopycnal) layers with potential densities refer-
enced to 2000 db and ranging from 27.10 to 37.17 sigma units.
Surface atmospheric forcing is derived from the ECMWF
reanalysis v5 (ERA5) dataset (Hersbach et al. 2018) and con-
sists of three hourly fields of air temperature and specific
humidity at 2 m, surface net downward and long- and short-
wave radiation, precipitation, and 10 m wind speeds. The
atmospheric radiative fluxes are scaled using CERES energy
balanced and filled gridded product (Kato et al. 2018).
Momentum and heat turbulent surface fluxes are computed
from CORE 2 bulk formulas (Large and Yeager 2004).
Monthly climatological river discharge is used to specify a vir-
tual salinity flux to include the effects of river inflow. Surface
salinity is relaxed to the World Ocean Atlas 2018 salinity with
an e-folding time of 1 month. A combination of Laplacian and
biharmonic mixing is used for horizontal momentum diffusion
while a biharmonic formulation is used for horizontal thick-
ness diffusion. These are specified with diffusion velocities of
magnitude 0.003 m s21 for the Laplacian term and 0.02 m s21

for the biharmonic mixing terms, respectively. The K-profile
parameterization (KPP; Large et al. 1994) is used for vertical
mixing with default values. Finally, a simple thermodynamic
energy-loan model is used for heat balance in regions with ice.

2) OBSERVATIONS

Observations used for assimilation and verification are listed
in Table 3. Remotely sensed along-track sea level anomalies

(SLA) from Collecte Localisation Satellites (CLS), gridded
maps of 1/48 Optimally Interpolated Sea Surface Temperature
(OISST) from NOAA and in situ temperature/salinity (T/S)
profiles from the Argo program obtained from usgodae.org
are systematically assimilated daily during the course of the
hindcast experiment (Fig. 3).

Along-track SLA data of 7-km nominal resolution from six
altimeters, Jason-3, CryoSat, Sentinel-3A and Sentinel-3B,
AltiKa, and HY-2B, are sampled from a 7-day window
(63 days) centered on the analysis data are pooled together
and assimilated daily (data coverage for a typical day from
these altimeters is shown in Fig. 3a). A reference mean
dynamic topography (MDT) based on Centre National
d’Études Spatiales–Collecte Localisation Satellites 18 MDT
(Mulet et al. 2021) is added to the anomalies to convert the
anomaly fields into the SSH fields. For the altimeters used in
this experiment, the data provider, CLS, suggests instrument
errors ranging from 2 to 4 cm. However, we used a constant
7-cm error for the altimeter data; this is slightly on the higher
side than instrument accuracy but compensates for unknown
errors in MDT and representativity errors in a crude way for
this demonstration experiment. The observation errors are
inflated to give more weight to the observations closest to the
analysis day with a Gaussian weighting scheme, which
smoothly sets the errors after 10 days to climatological levels.

Daily 1/48 OISST analysis and the associated formal map-
ping errors were bilinearly interpolated to the model grid for
assimilation. Typical SST errors range from 0.28 to 1.58C and
are usually high in regions of high mesoscale activity.

Delayed mode Argo profiles are used for this hindcast.
Globally, there are about 250–400 profiles available each day.
As for the altimeters, profiles falling within a time window of
7 days (63 days) centered on the analysis date are used for
assimilation. Temperature and salinity error standard devia-
tions were specified as 0.058C and 0.02, respectively, and were
further adjusted to give more weight to the observations clos-
est to the analysis day.

Both observation based gridded products and independent
withheld observations are used for verification. For SLA, opti-
mally interpolated maps at 1/48 produced daily by Archiving,
Validation, and Interpretation of Satellite Oceanographic
Data (AVISO; Le Traon et al. 1998) by merging data from all
available altimeters are used to assess the consistency of hind-
cast. Similarly, for SST the Met Office provides a 1/48 Global
Median Product Ensemble (GMPE) SST product from several
daily SST analysis produced by the Global High-Resolution
Sea Surface Temperature (GHRSST) consortium. The resolu-
tion of both these maps (1/48) is the close to the model’s native
resolution making it particularly convenient for assessing the

TABLE 3. Observations for assimilation and verification for the 2018 hindcast.

No. Observation Assimilation Verification

1 SLA Along-track data 1/48 gridded SLA maps from AVISO
2 Foundation temperature/SST NOAA 1/48 OISST 1/48 gridded GMPE SST
3 T/S profiles Argo T/S profiles Withheld T/S from moored buoys
4 Velocities Not assimilated GDP kriged drifting buoy velocities
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hindcast. We use both the assimilated Argo observations and
withheld T/S data from the tropical moored buoys to evaluate
the analysis. Finally, we use withheld velocity data (Lumpkin
and Centurioni 2019) from the NOAA Global Drifter Pro-
gram (GDP; https://www.aoml.noaa.gov/phod/gdp/index.php)
to assess the 15-m velocity fields produced by the hindcast.

3) DATA ASSIMILATION, INITIAL CONDITIONS, AND THE

ANALYSIS-UPDATE CYCLE

The state vector used in this hindcast is a subset of the prog-
nostic variables of HYCOM, namely, baroclinic layer thickness,
layer potential temperature, layer salinity, and layer velocities.

The spatial analysis is computed using the information matrix
with a biharmonic stencil as detailed in section 3b. Spatially
varying background error variances are specified using climato-
logical values (scaled by a factor of 0.6) derived from a prior
data assimilative experiment. T/S/layer thickness data from layer-
ized profiles are first assimilated to produce an intermediate
analysis. The sea surface height computed from this intermediate
analysis is then used a background field for a second and final
SSH analysis, this time using along-track altimeter data. This
final analyzed “SSH” is then used to further adjust the water col-
umn density field with the “layerized” Cooper and Haines
(1996) algorithm described in the appendix. Here the SSH inno-
vations are transformed into layer thickness adjustments. In

FIG. 3. A sample of the observations available on any given day. (top) Remotely sensed along-track sea level anom-
alies (SLA) from multiple altimeters. (bottom) In situ temperature/salinity (T/S) profiles from the Argo program in
magenta color and mooring locations are shown in black.
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doing so, care is taken to avoid using this algorithm to within one
correlation scale of actual profiles to ensure that corrections to
the water column using actual T/S profiles are not overwritten by
the altimeter derived adjustments. The analysis produces incre-
ments to temperature, salinity, layer thickness, and horizontal
velocity components. However, since there are no velocity obser-
vations, multivariate velocity corrections are not explicitly used
instead the model velocity is allowed to adjust to the pressure
increments over a 6-h time frame.

For this hindcast, initial conditions for 1 January 2018 is a
nowcast produced by an operational system using the older
T-SIS 1.0 version. Starting from this initial conditions the
model was advanced daily to 1800 UTC and an analysis is
computed using observations valid within a 63-day window

and centered at 0000 UTC the following day. The prognostic
variables are then incrementally updated (Bloom et al. 1996)
using constant increments over a 6-h period, starting at 1800
UTC and produce a nowcast or analysis at 0000 UTC the fol-
lowing day. These nowcasts are saved for the system evalua-
tion presented here. The same initial conditions were used for
a companion free run and advanced for the entire 2018 year
with no data constraints.

b. System evaluation

We begin by examining the impact of altimetry. Instead of
directly comparing with along-track data used in the assimilation
process, we present comparison with gridded maps produced by

FIG. 4. RMS errors in SLA computed with respect to the AVISO gridded SLA. (top) RMS error from the hindcast
and (bottom) RMS error from the free run. The spatial distribution of the RMS errors is calculated for each grid point
with data for the duration of the hindcast.
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AVISO. Maps of RMSD for the hindcast and the free run with
respect to the AVISO gridded product (Fig. 4) shows that
the RMSD for the hindcast over most of the ocean is close to the
specified SLA error of 7 cm and is everywhere lower than the
free run. The error levels in the assimilated product are generally
less than half the magnitude of the errors in the free running sim-
ulation and well below the observation standard deviation. How-
ever, in areas of high mesoscale activity such as the Gulf Stream,
Kuroshio, Agulhas, the RMSD while still lower compared to the
observed standard deviation, is higher than the specified error
suggesting room for improvement. A spatial map of the tempo-
ral correlation between AVISO maps and instantaneous mod-
eled fields (Fig. 5) shows a good anomaly correlation (.0.75) in
most regions where SLA data are assimilated. The free run SLA

exhibits relatively weaker correlation, particularly in the South-
ern Hemisphere, which is rectified in the hindcast. Apart from
the areas of strong mesoscale activity, the RMS errors increase at
high latitude in the circumpolar Southern Ocean. A combination
of mismatch in correlation scales due to the uniform grid used in
this region and aliasing of the fast barotropic signals due to strong
winds in this regions are likely reasons for this increased errors.

Both AVISO maps and hindcast use the same set of input
SLA data but they use different procedures for the estimates,
and thus, the above comparison can be considered as a neces-
sary test for consistency. The AVISO product uses a much
longer time window (35–42 days; https://catalogue.marine.
copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-
062.pdf) of observations to compute the gridded estimates

FIG. 5. SLA anomaly correlation computed with respect to the AVISO gridded SLA maps. The correlation between
AVISO and model SLA for (top) the hindcast and (bottom) the free runs. The correlations were computed in time
for each grid point.
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whereas we have used a 7-day window. The good agreement
between the estimates suggests that the assimilation procedure
with the model forecast as a background field helps to spread
information from sparse observations in both space and time
efficiently. We point out that the SSH is not a prognostic field
in HYCOM; rather, it is a diagnostic quantity that is obtained
from the Montgomery potential. When adjusting the model
with SLA data, the corrections are derived for layer thickness
rather than SSH. The degree of agreement indicates that the
strategy used here for assimilating SSH is effective.

Daily 1/48 gridded maps of OISST are assimilated by the
system. We compare the hindcast SST with the GHRSST-
GMPE median SST product. The spatial map of the mean
error shows large regions of small bias in the model (Fig. 6,

top panel). Although this map indicates the presence of long-
term differences over large regions, the magnitude is rather
small, less than 0.18 on average, and rarely above 0.28 any-
where. The small mean bias with respect to assimilated obser-
vations is reassuring as no model-dependent heat flux
corrections or relaxation was used. The shortwave and long-
wave fluxes from ERA5 were adjusted using NASA CERES
radiation flux estimates but these corrections by themselves
are rarely adequate and can at times interfere adversely with
the data assimilation process. Globally averaged RMS errors
are less than 0.38C for the assimilative run (Fig. 6, bottom
panel). Overall, SST is well constrained, with a small bias and
RMSD within specified observation errors. The exceptions
are regions of high mesoscale activity such as the Gulf Stream

FIG. 6. Spatial distribution of the (top) annual mean errors and (bottom) RMS errors in SST with respect to the
GMPE SST product.
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region where errors are on the order of 1.58C but these errors
are still well below the observed standard deviation of SST in
these regions.

The assimilation of relatively coarsely sampled in situ T/S
profiles is crucial for accurate representation of the vertical
density structure of the ocean particularly when a large quan-
tity of remotely sensed surface data are assimilated simulta-
neously. The hindcast assimilated T/S profiles from the Argo
dataset and time series of globally averaged error compared
with assimilated Argo T/S data show errors of magnitude
0.58C for temperature and 0.1 for salinity in the upper 2000 m
(Fig. 7). Between 0 and 500 m, departures from in situ obser-
vations are generally within 1.28C and 0.2 for temperature and
salinity, respectively. Exceptions occur in some high variability
regions such as the Agulhas and Gulf Stream regions similar
to situation with SLA and SST. Although these comparisons
are not with entirely independent data, they are useful to
gauge the consistency of the hindcast and the procedure used
to assimilate profiles directly in generalized vertical coordi-
nates. Recall that the T/S profiles were first converted from pres-
sure coordinates to the generalized vertical coordinates before
assimilation, a process that provides three quantities}layer
temperature, layer salinity, and layer thickness}which are
then assimilated layer by layer. The model outputs are then
again interpolated from generalized coordinates to pressure

coordinates for these comparisons. The magnitude of the
errors reported here are similar to ones reported in Oke
et al. (2013), Lellouche et al. (2013), Blockley et al. (2014),
Waters et al. (2015), and Martin et al. (2015) and therefore
suggest that the approach adopted here for profile assimila-
tion is effective.

Similar comparison with independent (withheld) T/S data
from tropical moorings (Fig. 3) shows consistently lower errors
for the hindcast compared to the free run (Fig. 8). These com-
parisons are restricted to the main thermocline region (0–500 m)
where the largest errors generally occur. The magnitude of
these errors for the hindcast are largely within 1.28C and 0.2
for temperature and salinity, respectively, and are similar to the
innovations reported in Lellouche et al. (2013) and Blockley
et al. (2014). The errors are consistently below the errors for
the free run suggesting a spread of information from observed to
unobserved regions as expected for a data assimilative system.
Space constraints do not permit an exhaustive analysis of the
impact of T/S profiles here but we mention that statistics for the
entire water column were computed in 23 2 bins and in vertical
layers and show that the T/S profile assimilation the reduces the
large warm bias in the Indo-Pacific temperature and other tem-
perature errors with complex spatial distribution. The fresh bias
in salinity over most of the model domain is significantly reduced
by the assimilation of T/S profiles.

FIG. 7. Time series of globally averaged errors in (top) temperature and (bottom) salinity com-
pared with assimilated Argo data. Model outputs and Argo profiles were interpolated to 32 stan-
dard levels (0–2000 m) for this comparison.
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Finally, using interpolated velocities from the Global Drifter
Program dataset, we compare the model results with the
observed drifter velocities at 15-m depth and at 0000 UTC daily.
These velocities were not assimilated and thus are a second set
of independent observations for verification. Figure 9 shows a
map of speed errors for the hindcast and the free run. The speed
errors are reduced in all regions of the global ocean and particu-
larly in regions of main ocean currents. Figure 10 shows a plot
of the GAMMA parameter defined as ratio of the relative
speed error. A lower GAMMA indicates better match between
model and observations. The GAMMA values for the hindcast
(around 0.7) are generally lower than the GAMMA values for
the free running model (about 0.9). The RMS velocity errors
(on average 20 cm s21) are lower than the observed standard
deviation of the drifter velocities for the entire duration of the
hindcast. Further, the correlations between drifter and model
velocities are generally 15%–20% higher for the hindcast for
the entire duration of the analysis and range between 0.5 and
0.6. We note that these correlations are statistically significant
due to extremely large number of samples.

c. Hindcast summary

The results from the hindcast clearly show the positive
impact of data assimilation in reducing errors compared to the

free run. The same initial conditions are used for both the free
run and the hindcast. For the free run, errors increase slowly
with time and saturate after about 3 months (Figs. 7, 8, 10).
The hindcast is continuously constrained with data, and thus, the
errors and correlations are more or less constant. Further, the
magnitude of the errors are comparable to errors and innova-
tions reported for similar systems (Oke et al. 2013; Lellouche
et al. 2013; Blockley et al. 2014; Waters et al. 2015; Martin et al.
2015). Several aspects of the hindcast can be further improved.
We have assimilated SLA data with a uniform error of 7 cm; this
can be improved with spatially varying errors. Further, the verti-
cal projection of SLA innovations is unlikely to be optimal
everywhere, particularly in weakly stratified regions where alter-
nate methods might be required. Similarly, the SST field was
constrained with maps that provides information over the whole
domain. A more robust test would be to assimilate the satellite
and in situ directly. Finally, vertical profiles were converted
from pressure coordinates to generalized vertical coordinates
for assimilation. Altering both salinity and temperature is not
straightforward in isopycnic part of the model and can lead to
cabbeling. These aspects will have to evaluated in longer-term
hindcasts. The hindcast is being extended to three years
(2018–20) and detailed verification will be reported elsewhere.
Overall, the hindcast provides a good starting point for further
improvements.

FIG. 8. Time series of globally averaged errors in (top) temperature and (bottom) salinity compared with withheld mooring data.
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7. Summary and conclusions

The purpose of this paper is to present an open source code
for ocean data assimilation (T-SIS 2.0), provide some technical
details of the implementation, and validate its performance in a
global hindcast application. Specifying error covariances or the
weighting matrices in the least squares formulation is the funda-
mental aspect of any data assimilation package. The package
presented herein allows several ways to specify these matrices.
Among them, the GMRF based method offers several advan-
tages for large analysis problems. Analysis with millions of
observations and model grid points can be computed with lin-
ear complexity in the number of grid points using iterative solv-
ers without the need for partitioning the observations common
to many other widely used schemes. Due to the ability of

relatively low-order GMRF to represent longer range correla-
tions by successive local interactions, the GMRF scheme can be
included as a subroutine within the ocean model without exces-
sive modifications to the ocean model domain decomposition.
In this case, data can be assimilated whenever available or at
preset times without having to resort to input/output through
restart files, which can have significant impact in long reanalysis
type of computations.

The GMRF based information matrix L used in this pack-
age are numerical discretizations of the diffusion operator.
This can be related to the modeling of the inverse of the back-
ground error correlations by positive definite polynomials of
the diffusion operator used in the variational assimilation
methods (Yaremchuk and Smith 2011; Mirouze and Weaver
2010). The ability to specify inhomogeneity and anisotropy

FIG. 9. Spatial distribution of errors in 15-m speed computed with respect to the GDP drifter dataset. (top) The error
in the hindcast and (bottom) the free run.
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via a diffusion tensor, the computational advantages, and the
relatively easier enforcement of the positive definiteness are
some of the advantages of variational approaches. These
advantages are naturally present in the GMRF-based model-
ing of the implicit covariance.

The information matrices used here are limited to simple
predefined adjacency matrices of the graph Laplacians. How-
ever, given the multiscale nature of the problem, a single
GMRF parameterization is unlikely to work for all scales and
undoubtedly other approaches to specify the “neighborhood”
will be required, particularly to capture longer-range correla-
tions. While correlation structures of a spatial random field
and inverse factorizations of the covariance matrix is an active
area of study (e.g., Yaremchuk et al. 2018; Yaremchuk and
Sentchev 2012; Hsieh et al. 2014), our initial approach to
model long range correlations is based on multiscale realiza-
tions. To capture a range of scales, a hierarchy of analysis
grids can be set up going from coarse to fine resolutions with
analysis starting from the coarse scales and going to finer
scales and at each stage using the analysis from the previous
resolution as the forecast/background values. This approach is
akin to the classic successive corrections and is consistent with
the standard modeling practice of forcing high-resolution
models using the results of coarser-resolution models.

Apart from error covariance modeling, the performance of
the data assimilative systems are crucially dependent on the
observations, their preprocessing and quality control and
many other technical details such as the vertical projection of
the surface information, incremental updating, and in the case
of HYCOM, handling additional complexity introduced by
the hybrid nature of the vertical coordinate system. The pack-
age in its current version can assimilate all of the commonly
available observations from remote sensing and in situ plat-
forms such as SLA, SST, vertical profiles of temperature and
salinity. The results from the hindcast using the package are
similar to the performance reported for many operational

systems and provide a default starting point for choices that
have to be made with respect to numerous implementation
details that go into building a data assimilative system. Data
assimilative systems based on this package are now in use for
the Indian Ocean, South Atlantic, the Gulf of Mexico, and
other areas and the package is continually updated based on
the feedback provided by the user community. Recent
updates include assimilation of velocity data from drifting
buoys, HF radars, and assimilation of feature information
such as locations of fronts estimated from ocean color. The
latter is accomplished by a rubber sheeting process to modify
the surface height field to align with the fronts which is then
used to adjust the models density structure as with altimeter
data.

Further work on the package is proceeding along three lines:
1) Multiscale nature of the analysis problem is being addressed
by a multiresolution modeling approach wherein several fine-
resolution models are embedded within a coarse global system.
Each nested model has GMRF based error process that oper-
ates at a certain scale associated with the resolution. Interaction
between models allow corrections at scales not well captured
by the GMRF associated with a particular model; 2) a second
aspect of the work relates to the recursion of the information
matrix to evolve the error process in time. Chin et al. (1999)
provides a starting point for the information matrix recursion
which can then be updated periodically with information from
ensembles to sidestep closure issues with tangent linear models.
Finally, recent work in the statistics and machine learning com-
munity has began to explore the connections between GMRF
and convolutional neural networks (Siden and Lindsten 2020).
In particular it has been pointed out that GMRFs similar to
ones used in the package are essentially one-layer convolutional
neural networks (CNN). This allows generalizing GMRFs to
multilayer CNN architectures effectively increasing the scale of
GMRF process with favorable computational scaling and possi-
bly leading to deep GMRF based assimilation methodologies.

FIG. 10. Time series of GAMMA, defined as ratio of the relative speed error between observa-
tions and model, and correlation between modeled and observed drifter velocity components at
15 m.
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APPENDIX

Vertical Projection of SLA Increments into
the Water Column in T-SIS 2.0

The algorithm is a modification of the Cooper and
Haines (1996) method for generalized vertical coordinates

used in HYCOM. It operates on a water column. Whenever
possible, only two layers will have nonzero innovations, one
above the main thermocline and one below. Their innova-
tions are equal in magnitude and opposite in sign, so that
the resulting pressure thickness for the water column will
not change the bottom pressure. The magnitude of the
innovations should guarantee that the sum of the corre-
sponding pressure-thickness innovations is equal to the sea
surface height innovation. If constraints on minimum
allowed layer thickness prevents a sufficient part of one
layer’s pressure thickness to be transferred to the other to
accommodate the SSH innovation, then that layer’s innova-
tion will be as large as allowed, and the procedure will be
repeated for the adjacent layer. All layers beneath and
including the layer containing the mixed layer base will be
adjusted if necessary. To extend the adjustment into all
fixed thickness layers at and beneath the mixed layer base,
all layers between the layer containing the base and the first
layer significantly thicker than the specified minimum thick-
ness are consolidated into a single layer before the rear-
rangement. After the rearrangement, all layers within this
consolidated layer are thinned or thickened in the same
proportion as the consolidated layer. An example of the
adjustment to a water column located at 128S, 988W for an
SSH increment of 0.8 m is shown below in Table A1. Here
layer 4 is inflated with water from layer 30 to match the
observed sea level.
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