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Abstract25

The decomposition of oceanic flow into its geostrophically balanced and unbalanced mo-26

tions carries theoretical and practical significance for the oceanographic community. These27

two motions have distinct dynamical characteristics and affect the transport of tracers28

differently from one another. The launch of the Surface Water and Ocean Topography29

(SWOT) satellite provides a prime opportunity to diagnose the surface balanced and un-30

balanced motions on a global scale at an unprecedented spatial resolution. Here, we ap-31

ply dynamic-mode decomposition (DMD), a linear-algebraic data-driven method, to tidally-32

forced idealized and realistic numerical simulations at submesoscale-permitting resolu-33

tion and one-day-repeat SWOT observations of sea-surface height (SSH) in the Gulf Stream34

downstream of Cape Hatteras, a region commonly referred to as the separated Gulf Stream.35

DMD is able to separate out the spatial modes associated with sub-inertial periods from36

super-inertial periods. The sub-inertial modes of DMD can be used to extract geostroph-37

ically balanced motions from SSH fields, which have an imprint of internal gravity waves,38

so long as the data extends long enough in time. We utilize the statistical relation be-39

tween relative vorticity and strain rate as the metric to gauge the extraction of geostro-40

phy.41

Plain Language Summary42

Observations of the global ocean surface are now done routinely by satellites. One43

of the key variables in describing the oceanic state is sea-surface height (SSH), i.e., el-44

evations of the sea surface. For those who enjoy marine sports, it is well appreciated that45

the ocean surface is teeming with waves and currents. Similar to the density interface46

between the ocean and atmosphere, there are waves beneath the surface at density in-47

terfaces within the ocean. Waves at the ocean surface are called surface waves and in48

the interior are called internal waves. Both surface- and internal-wave signals imprint49

onto SSH. In order to extract information on oceanic currents (e.g., flow direction and50

speed) from SSH, it is necessary to remove the signal of surface and internal waves since51

waves and currents are generally not physically related to each other on the same scales52

in space and time. Namely, waves tend to propagate much faster and have smaller spa-53

tial scales than the currents. Here, we implement a method based on linear algebra, which54

is able to capture the slowly varying residual signals from the waves.55
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1 Introduction56

With the launch of the Surface Water and Ocean Topography (SWOT) satellite,57

there is great interest within the oceanographic community to extract surface velocity58

information from the new altimetry observations with O(1 km) spatial resolution (Dibarboure59

et al., 2024; J. Wang et al., 2024). The fact, however, that the observed altimetry is a60

superposed signal of geostrophic turbulence and waves complicates the problem (e.g. Rich-61

man et al., 2012; Savage et al., 2017; Le Guillou et al., 2023; Xiao et al., 2023; Maingonnat62

et al., 2024). While geostrophy is one of the most simple and practical balances that re-63

lates sea-surface height (SSH) gradients to velocity, horizontal gradients of unfiltered SSH64

observations are contaminated by high-frequency balanced motions and unbalanced mo-65

tions such as flows with Rossby numbers on the order of unity and larger and internal66

gravity wave (IGW) signals (Torres et al., 2018; McWilliams, 2019, 2021; Cao et al., 2023).67

One work around has been to exploit the fact that submesoscale dynamics and IGWs68

are associated with smaller spatial scales and shorter time scales than geostrophic ed-69

dies. Namely, filtering the SSH and/or momentum fields by band-pass filters in the wavenum-70

ber and frequency domain (C. Wang et al., 2023a; Jones et al., 2023; Bakhoday Paskyabi,71

2024). A limitation of this approach is that Fourier transforms require the data to be72

periodic and to not have any gaps. Another popular method for modal decomposition,73

empirical orthogonal function (EOF), is excellent at extracting spatial modes of the data74

but decouples the space-time information (Uchida et al., 2021); the EOF spatial modes75

are unaware of the temporal phase information. Additionally, decomposition methods76

based only on spatial information do not remove IGWs that have wavelengths compa-77

rable to the local Rossby radii of deformation (Cao et al., 2021). Lagrangian filtering,78

on the other hand, requires direct knowledge of the momentum fields themselves (Shakespeare79

et al., 2021; C. Wang et al., 2023b; Jones et al., 2023; Baker et al., 2024; Minz et al., 2024),80

which SSH observations do not directly provide.81

Here, we implement a relatively novel data-driven method coined as dynamic-mode82

decomposition (DMD) that decomposes the data into spatial modes while retaining the83

phase (i.e., growing, decaying and/or oscillating in time) information associated with each84

mode (Kutz et al., 2016). Conceptually, it can be thought of as applying the band-pass85

filter in the real space-time domain (instead of the wavenumber-frequency domain); or,86

it can be thought of as EOF spatial modes associated with temporal phase information.87
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DMDs have been widely adopted in the broader field of fluid mechanics (Schmid, 2022;88

Baddoo et al., 2023; S. L. Brunton & Kutz, 2024), plasma physics and geomagnetics (Chi-89

Durán & Buffett, 2023; Kutz et al., 2024), neuroscience (B. W. Brunton et al., 2016),90

and epidemiology (Proctor & Eckhoff, 2015). In the context of SWOT, our quest is to91

decompose the slowly varying geostrophic dynamics in first-order balance with Earth’s92

rotation and vertical stratification from the fast unbalanced motions associated with sub-93

mesoscale dynamics and IGWs given the observed SSH fields. As we shall see, DMD is94

capable of separating out the slow (sub-inertial) component in SSH without the require-95

ment of periodicity and will allow us to diagnose geostrophy from it. We will demonstrate96

that this method is an effective approach to isolate geostrophic motions in idealized and97

realistic high-resolution ocean simulations with IGWs, and one-day-repeat SWOT tracks.98

The paper is organized in a way that demonstrates the application of multi-resolution99

coherent spatiotemporal scale separation (mrCOSTS), a variant of DMD, to flows from100

idealized configurations to increasing levels of complexity and realism. We briefly intro-101

duce the math behind mrCOSTS and the SSH dataset from idealized and realistic tidally-102

forced submesoscale-permitting simulations in the section below. We present our results103

in Section 3. Section 4 ends with a Discussion on Level 3 SWOT Calibration and Val-104

idation (Cal/Val) data (Dibarboure et al., 2024).105

2 Method and Data106

2.1 Multi-Resolution Coherent Spatiotemporal Scale Separation107

At the basic level, dynamic-mode decomposition (DMD) is a method that seeks a108

locally linear dynamical system (Kutz et al., 2016)109

d

dt
η = Aη , (1)

where A is a linear operator and approximately encapsulates all physical processes re-110

sponsible for the system to step forward in time. In discrete form, this can be recasted111

as112

ηn = AAAηn−1 = AAAnη0 , (2)

where AAA = exp (A∆t) and n = 1, 2, ... is the time step. ∆t is the time between the113

time steps when discretizing (1). The goal of DMD is to determine AAA so that the solu-114

tion to (2) can be expressed by the eigenvalues λ and eigenvectors ψ of the discrete-time115
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map AAA116

ηn =
r∑

j=1
ψjλn

j bj , (3)

where bj are the coordinates of the initial state η0 in the eigenvector basis, and r is the117

rank of singular-value decomposition (SVD) of AAA. Equation (2) can be expanded with-118

out a loss of generality as119

HHH =


| | |

η0 η1 · · · ηn−1

| | |

 , (4a)

HHH′ =


| | |

η1 η2 · · · ηn

| | |

 , (4b)

where HHH and HHH′ are shifted by one time step. The DMD algorithm produces a low-rank120

eigen decomposition (3) of matrix AAA that optimally minimizes the Frobenius norm (Askham121

& Kutz, 2018)122

||HHH′ − AAAHHH||F . (5)

The approximation (5) arises from fitting a locally linear system (1) to a system that123

is in fact non-linear. By rewriting ωj = ln (λj)/∆t, the approximate solution for all fu-124

ture times can be predicted as125

η(t,x) ≈
r∑

j=1
ψj(x) exp (ωjt)bj = ΨΨΨ exp (Ωt)bbb . (6)

The real part of ωj , Re[ωj ] gives growing or decaying modes in time while the imaginary126

part Im[ωj ] corresponds to oscillating modes. Equation (6) may look similar to EOFs,127

viz.128

η(t,x) ≈
M∑

j=1
aj(t)ϕj(x) , (7)

where a is the principle components and ϕ is the EOF spatial modes (cf. Uchida et al.,129

2021). The difference is that the spatial modes are decoupled from the temporal phase130

information in EOFs while the two are interlinked in DMDs.131

In practice, we employ a variant of DMD, viz. multi-resolution coherent spatiotem-132

poral scale separation (mrCOSTS), a method which was originally proposed by Dylewsky133

et al. (2019) and advanced by Lapo et al. (2025), to deal with datasets comprising of multi-134

scale non-linear dynamics by iteratively applying DMD over the entire dataset. For each135

decomposition level a sliding window of fixed length in time is applied to the data and136
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a DMD model is fit, resulting in a collection of DMD models for each window. These137

DMD models are categorized into a poorly resolved low-frequency component and bet-138

ter resolved high-frequency components, called the local-scale separation. The high- and139

low-frequencies discovered are in reference to the window length. The low-frequency com-140

ponent is used as input to the next decomposition level with a larger window size. Namely,141

the highest frequency components are extracted at each level. This local-scale process142

is iterated over the the number of a priori decomposition levels prescribed by the user.143

Upon completion of the local scale a global-scale separation is performed, which captures144

leaked frequency components between decomposition levels. The global-scale separation145

is achieved by applying the k-means clustering to the temporal dynamics of the collec-146

tion of DMD models (Pedregosa et al., 2011). Namely, we collect the bands across all147

decomposition windows for the global-scale separation to generate the bands (see also148

Lapo et al., 2025, their Fig. 1).149

Due to subtracting out the mean within each window, mrCOSTS is especially amenable150

to diagnosing fluid flows as the decomposition approximates the high-frequency fluctu-151

ations of a Reynolds’ averaged flow at each decomposition level. The resulting decom-152

position identifies discrete bands of coherent spatiotemporal modes. The scale-separated153

bands are denoted G1, G2, . . . , Gp, . . . , GP where the subscript p indexes the scale-separated154

bands and P is the total number of bands. Each band can then be used to reconstruct155

the contribution of Gp to the original data, η̆p(t),156

η̆p(t,x) =
N∑

k=1

∑
(j,ℓ)∈Gp

ψk
j,ℓ(x) exp (ωk

j,ℓt)bk
j,ℓ . (8)

The subscript ℓ denotes the decomposition level and j to index the DMD eigenvalue ω157

and eigenvector ψ pairs up to rank r specific to the ℓth level. The superscript k is used158

to index the data windows so that snapshots belonging to the kth window are approx-159

imated by the decomposition. We use η̆p(t) to indicate an approximation of the origi-160

nal input signal per band ηp(t). Summing over a subset of the bands, p, allows one to161

reconstruct a slow and fast component of the data. The mrCOSTS reconstruction of the162

original data is achieved by summing up over all bands in addition to the background163

band, η(t) ≈
∑P

p η̆p(t)+η̆b(t). The background (lowest-frequency) band, η̆b(t), is the164

left-over low-frequency component after finishing recursively applying mrCOSTS as the165

high-frequency component gets extracted at each level.166
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MrCOSTS can provide a robust scale separation for a range of hyperparameters,167

often requiring little-to-no tuning. The most relevant hyperparameters are the length168

of the window used at each decomposition level, the SVD rank of the DMD fit at each169

level, any constraints on the eigenvalue solutions and eigenvalues themselves. We refer170

the reader to Lapo et al. (2025) and Ichinaga et al. (2024, their online tutorial https://171

github.com/PyDMD/PyDMD/tree/master/tutorials/tutorial20) for further details re-172

garding the implementation and user guide on mrCOSTS.173

2.2 Idealized Wave-Vortex Simulation174

As was demonstrated by Early et al. (2021), an unambiguous decomposition be-175

tween linear waves and geostrophic motions in variable stratification can be made un-176

der flat-bottom boundary conditions. The eigenmodes from the decomposition (Early,177

Hernández-Dueñas, et al., 2024) form a spectral basis for the wave-vortex model (Early,178

Avila, et al., 2024), which then solves the equations of motion for a doubly-periodic ro-179

tating non-hydrostatic Boussinesq fluid with arbitrary stratification. At each instant in180

time the complete state of the fluid is decomposed into geostrophic and wave modes, while181

the nonlinear time steps flux energy between modes. Although other methodologies for182

separating waves and geostrophic motions exist, they are either restricted to constant183

stratification and shallow-water systems (Chouksey et al., 2023, & references therein),184

or use a temporal filter that depends on the linear dispersion relation for waves (Lelong185

et al., 2020; Shakespeare et al., 2021). In contrast, the wave-vortex decomposition is fun-186

damentally an inversion of quasi-geostrophic potential vorticity, and separates the flow187

without any assumptions about its temporal evolution. The advantage to this approach188

is that the wave-vortex decomposition and DMD are using very different information about189

the flow, and thus make comparisons all the more meaningful.190

For the simulation considered here, the ocean was spun up by imposing bottom fric-191

tion and continually relaxing to a weak, low-mode geostrophic flow, which goes baroclin-192

ically unstable; this injects energy and enstrophy into the system, which is then removed193

by the bottom friction and small-scale damping. In 2000 days, the flow reaches steady-194

state, resulting in a single pair of dipolar geostrophic eddies, after which inertial oscil-195

lations and a narrow band of IGWs with semidiurnal frequency were prescribed as a forc-196

ing. Interactions with the mesoscale eddy field cause a robust IGW field to emerge (Lelong197

et al., 2020) which reaches a steady-state IGW field within 10 days that resembles a Garrett-198
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d)c)

b)
a)

Figure 1. Buoyancy frequency (N2) with an exponential vertical profile (a) and snapshots of

the total SSHa and its geostrophic and IGW components at an arbitrary time step (i.e., the 200th

time step after the flow is spun up) from the doubly-periodic wave-vortex simulation (b - d). N2

is kept stationary throughout the simulation.

Munk spectrum (Garrett & Munk, 1975) with an amplitude close to the level of SWOT199

instrumental noise. The inertial and semi-diurnal forcing is maintained during the 70-200

day analysis period where geostrophic and IGW fields evolve through nonlinear inter-201

actions. This configuration is ideal to test mrCOSTS as we will know the exact initial202

frequencies of the waves. Furthermore, because the wave-vortex model exactly isolates203

the geostrophic component at each time step, this will be treated as our target for mr-204

COSTS to extract from the total SSH anomaly (SSHa). The prescribed vertical strat-205

ification and snapshots of the spun-up SSHa of the geostrophic and IGW component at206

an arbitrary time step is documented in Fig. 1. An animation of the spun-up fields of207

relative vorticity normalized by the Coriolis frequency is provided in the Supporting In-208

formation (dmd-movie.mp4) where the local Rossby numbers are small (Ro = ζ/f ∼209

O(0.1)).210
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Given that we know a priori that the flow consists of a single pair of geostrophic211

eddies and IGWs with distinct frequencies from each other, we applied mrCOSTS in two212

levels with the window lengths of [1, 8] days respectively; this splits the SSH anomaly (SSHa)213

fields into high- and low-frequency DMD modes about the window lengths during each214

iteration. In other words, the number of iterations for the local-scale separation here was215

prescribed as two (N = 2 in (8)). The first window length was chosen to be diurnal and216

the second window length is the characteristic time scale of geostrophic eddies (cf. Tor-217

res et al., 2018, their Fig. 3). The model outputs were saved every 30 minutes but hourly218

resolution was used to construct HHH and HHH′. Conceptually, for a one-day (24-hour) and219

eight-day window, mrCOSTS fits 24 and 192 data points respectively in time for data220

with hourly resolution (∆t = 1 hour). Namely, the number of data points per window221

depends on the temporal resolution of the data used. The window is then slid in time222

to go through the entire dataset in a manner similar to how one would take the running223

mean. The ranks of SVD were set as [8, 18], which need to be smaller than the number224

of data points within each window, i.e., [24, 192] respectively. Increasing the ranks gen-225

erally leads to mrCOSTS finding more modes, ψk
j,ℓ, but given the simplicity of the flow,226

we have kept it minimalistic.227

Figure 2a shows the probability density function (PDF) of frequencies associated228

with spatially coherent modes discovered by mrCOSTS and the frequency spectrum of229

SSHa over the duration of 72 days; periodograms were taken every ∼ 150 km and then230

spatially averaged to construct the spectrum. We see that the SSHa fields contain a sig-231

nal of IGWs with a peak around the diurnal and semidiurnal frequencies.232

2.3 Tidally-Forced Submesoscale-Permitting North Atlantic Simulation233

We take the hourly SSHa snapshot outputs from an atmospherically and tidally234

forced North Atlantic simulation at 1/50◦ (O(2 km)) resolution using the HYbrid Co-235

ordinate Ocean Model (HYCOM50; Xu et al., 2022); data of subdomains are publicly236

available via the Open Storage Network, a cloud storage service operated by the National237

Science Foundation (NSF; Uchida et al., 2022). Bathymetry data was taken from the 15-238

second GEBCO 2019 global dataset and the modeled domain covers the North Atlantic239

from 28◦S to 80◦N. HYCOM50 was spun up for 15 years from the U.S. Navy’s Global240

Ocean Climatological (GDEM) state of rest and forced with the monthly climatologi-241

cal European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis ERA-242
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40. Additionally, three-hourly wind anomalies from the Navy Operational Global Atmo-243

spheric Prediction System (NOGAPS) and the Climate Forecast System Reanalysis (CFSR)244

for the year 2003 (a neutral year in term of large-scale North Atlantic Oscillation pat-245

tern) were prescribed with absolute wind stress. Eight tidal constituents were included246

(K1, O1, P1, Q1, M2, S2, N2, and K2). The three months of August – October (ASO) in247

year 19 is used in our analyses below. Further details on the model configuration can be248

found in Chassignet and Xu (2017) and Xu et al. (2022).249

In constructing HHH and HHH′, we sub-sampled the SSHa fields every three and 12 hours250

in the separated Gulf Stream (∆t = 3 and 12 hours; Fig. 4a), a region partially over-251

lapping with a SWOT crossover (Figs. 4a and 6). The temporal sub-sampling mimics252

observations where high resolution in time is not obtainable. The spatial mean was re-253

moved from each snapshot and the fields were further spatially smoothed by applying254

a Gaussian filter with the standard deviation of 10 km using the gcm-filters Python255

package (Grooms et al., 2021); we do not expect perturbations on scales smaller than256

this to be in geostrophic balance (Pedlosky, 1984; Vallis, 2006) and some spatial filter-257

ing is justified to compensate for the lack of temporal resolution. The latitude-longitude258

dimensions were flattened into a one-dimensional array so as to feed mrCOSTS two-dimensional259

fields in space-time.260

We applied mrCOSTS in six levels (N = 6) with each level splitting the SSH anomaly261

(SSHa) fields into high- and low-frequency modes about the window lengths of [1, 2, 3, 4, 8, 30] days262

respectively for the three-hourly case. The first four window lengths were chosen to be263

close to tidal periods and their harmonics, the fifth window length is the characteristic264

time scale of geostrophic eddies, and the sixth window length has a monthly time scale.265

When the data were sub-sampled 12 hourly, we applied mrCOSTS in four levels (N =266

4) with each window length corresponding to [3, 4, 8, 30] days. The ranks of SVD were267

set as [6, 6, 6, 8, 8, 10] in the three-hourly case for each level and [4, 4, 6, 10] in the 12-hourly268

case. Note that shortening the window lengths will potentially lead to discovering bands269

with higher frequencies but they must be long enough to allow for the least-squares fit270

(5) and SVD to converge.271

Figure 2b shows the PDF of frequencies discovered by mrCOSTS and the frequency272

spectrum of SSHa over the three months of August - October; periodograms were taken273

every ∼ 100 km and then spatially averaged in constructing the spectrum. We see that274
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the SSHa fields contain a strong signal of internal tides with peaks around the diurnal275

and semidiurnal frequencies. Focusing on the PDF, one notices that mrCOSTS bands,276

Gp, around higher-order tidal harmonics are missing. While further tuning of the param-277

eters (e.g., number of decomposition levels, window length prescribed to each level, rank278

of SVD, etc.) may improve the discovery of super-inertial frequencies, given that our in-279

terest here is in extracting the sub-inertial geostrophic dynamics, we have settled with280

the parameter settings described above. It is possible that Doppler shift could lead to281

a shift in frequencies, and thus part of the balanced dynamics could be associated with282

super-inertial frequencies (Chouksey et al., 2018). Our focus, however, remains on the283

sub-inertial signal as the component in first-order balance with Earth’s rotation and ver-284

tical stratification.285

3 Results286

The mrCOSTS parameters used for each experiment are summarized in Table 1.287

Table 1. MrCOSTS parameters used for each experiment

Experiment Levels Window lengths SVD ranks Bands comprising the slow mode

Wave-vortex N = 2 [1, 8] days [8, 18] p = [0, 1]

– N = 3 [0.5, 1, 2, 16] days [4, 8, 10, 18] p = [0, 1, 2]

HYCOM50 (3 hourly) N = 6 [1, 2, 3, 4, 8, 30] days [6, 6, 6, 8, 8, 10] p = [0, 1, 2, 3, 4, 5, 6]

– (12 hourly) N = 4 [3, 4, 8, 30] days [4, 4, 6, 10] p = [0, 1, 2, 3, 4, 5, 6, 7]

– (24 hourly) N = 4 [9, 10, 11, 30] days [4, 4, 6, 10] p = [0, 1, 2, 3]

– (24 hourly, JASON) N = 5 [9, 10, 11, 30, 90] days [4, 4, 6, 10, 18] p = [0, 1, 2, 3, 4]

SWOT Cal/Val N = 4 [9, 10, 11, 30] days [4, 4, 6, 10] p = [0, 1, 2, 3, 4, 5]

288

3.1 Idealized Wave-Vortex Simulation289

As a proof of concept, we start by demonstrating the spatial maps of SSHa recon-290

struction. The mrCOSTS reconstruction of the sub-inertial (slow) component of SSHa291
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from the wave-vortex simulation is shown in Fig. 3b. In total, mrCOSTS discovered 12292

bands (p = 0, 1, · · · , 11) based on the convergence of SVD (the frequency associated293

with each band is given in Fig. 2a); this is similar to EOF where it yields a finite num-294

ber of modes (M in (7)) or discrete spectral decomposition based on fast-Fourier trans-295

form where the number of Fourier modes is determined by the data resolution and Nyquist296

frequency/wavenumber. Given the 12 bands in total, the decision on what to select as297

part of the ‘slow’ component becomes somewhat subjective. Here, we chose the slow com-298

ponent as the net sum of the background band and first two bands (p = 0, 1), which299

are associated with periods longer than a day. Figure 3a shows the time series of the spa-300

tial correlation between the geostrophic component and mrCOSTS slow component; the301

spatial correlation is persistently higher than 0.999. The correlation was computed as:302

ρ =
E

[
(η − η)(

∑
p η̆p + η̆b −

∑
p η̆p + η̆b)

]
σηση̆

, (9)

where E [·] is the expectation value, (·) is the spatial mean, and σµ and σµ̆ are the spa-303

tial standard deviations of the geostrophic component and mrCOSTS slow component304

respectively. The difference between Figs. 1c and 3b, c is hardly detectable by the naked305

eye. This indicates that the slow component of mrCOSTS can be used to diagnose sub-306

inertial motions in geostrophic balance. The slightly lower correlation towards the be-307

ginning and ending of the time series is attributed to η̆p(t) having the largest errors at308

the edges of the time domain due to edge effects analogous to the cone-of-influence (COI)309

in wavelet analysis (Torrence & Compo, 1998; De Moortel et al., 2004; Lapo et al., 2025).310

311

Now, we can play the game where we assume that we had no prior knowledge of312

the flow. Namely, a case where, from eye inspection, we can tell that the flow consists313

of eddies and waves (Fig. 1b) but do not know the exact frequencies of the dynamics.314

Based on the frequency spectrum (Fig. 2a), we can make an educated guess that the flow315

has peaks about the semidiurnal and diurnal frequencies so we can prescribe the win-316

dow lengths as [0.5, 1, 2, 16] days. The corresponding SVD ranks were set as [4, 8, 10,317

18]. MrCOSTS found eight bands in total and we chose the first three bands with pe-318

riods longer than a day as part of the slow component (Table 1; Supporting Information319

Fig. S1a). We again find that mrCOSTS decomposes and reconstructs SSHa with small320

errors (on the order of 1%; Fig. 3a, c and e). The point of all this is that the mrCOSTS321

algorithm is highly versatile to the choice of parameters (as was noted in Section 2.1)322
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so long as the window lengths cover a reasonable range of distinct time scales for phe-323

nomena consisting of multi-scale dynamics (Lapo et al., 2025).324

3.2 Tidally-Forced Submesoscale-Permitting North Atlantic Simulation325

Encouraged by the success from the idealized case, we show the modeled SSHa field326

in HYCOM50 in Fig. 4a and the mrCOSTS reconstruction of its sub-inertial (slow) com-327

ponent. The slow component was chosen to be the net sum of the background band and328

bands 0 - 7, which have periods longer than 2 days (i.e., the vertical black dashed lines329

in Fig. 2b associated with frequencies lower than 5×10−1 cpd). We see that slowest (back-330

ground) band already captures the large-scale features of the separated Gulf Stream and331

a cold-core eddy (Fig. 4b). The addition of bands up to seven further improves the re-332

construction when the SSHa fields are fed every three hours to construct HHH and HHH′ (Fig. 4c, d).333

This is corroborated by the spatial correlation shown in Fig. 4g where outside of COI,334

the correlation is always higher than 0.99. We also find that the performance of mrCOSTS335

remains relatively insensitive to temporal sub-sampling. This is highlighted by the spa-336

tial maps and spatial correlation where the SSHa fields were given every 12 hours (Fig. 4e -337

g). The first eight bands out of the 10 were summed up to obtain the slow component338

for the 12-hourly case (Table 1; Fig. S1b in Supporting Information).339

Given the extraction of the slow component of SSHa evolution, we can diagnose340

geostrophy from the fields341

fu = −gηy, fv = gηx , (10)

and from it, relative vorticity ζ = vx−uy and strain rate |α| =
√

(ux − vy)2 + (vx + uy)2.342

Since relative vorticity and strain rates are second-order derivative terms of SSHa, they343

will highlight the small-scale features (or the lack thereof; Shcherbina et al., 2013; Bal-344

wada et al., 2021; Jones et al., 2023). When the spatially-smoothed instantaneous snap-345

shot outputs of SSHa fields are used, the imprint of IGWs contaminate the estimates of346

geostrophic relative vorticity (Fig. 5a). This is also indicated in the joint PDF of rela-347

tive vorticity and strain rates where there is an anomalously high likelihood of values with348

large amplitude and negative values in relative vorticity (Fig. 5e); geostrophy is only ex-349

pected to hold under small Rossby numbers (Vallis, 2006). The waves can be filtered out350

by taking daily averages of the hourly SSHa field (Fig. 5b, f). This gives us a reference351
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for geostrophic eddies, but we are interested in cases where hourly temporal resolution352

is not available at hand.353

Figure 5c and d document the relative vorticity fields from the slow component ex-354

tracted by mrCOSTS. First thing to note is that the mrCOSTS bands are smooth enough355

to permit second-order spatial derivatives. There is a large attenuation in the signal from356

IGWs with its performance being better when SSHa fields are given every three hours357

compared to 12 hours. The same description also applies to both strain rate and hor-358

izontal divergence fields (Figs. S2 and S3). Nonetheless, both cases of sub-sampling cap-359

ture the joint PDF features of geostrophic eddies (Fig. 5g, h). The Rossby numbers on360

the order of unity (Ro ∼ O(1)) present in the mrCOSTS slow component and daily-361

averaged SSHa likely indicate that the eddies and meandering of the Gulf Stream anal-362

ysed here are in cyclogeostrophic balance (Fig. 5b, c; Hiron et al., 2021); these are sig-363

nals we want to retain in addition to geostrophy and mrCOSTS works surprisingly well364

in doing so.365

4 Discussion and Conclusions366

We end by discussing results on applying multi-resolution coherent spatiotempo-367

ral scale separation (mrCOSTS) to the one-day-repeat SWOT observations of SSHa (∆t =368

24 hours) during its Cal/Val phase (March 29 – July 11, 2023). We have taken the Level369

3 (L3) KaRIn filtered product (Dibarboure et al., 2024) as our interest here is in extract-370

ing the first-order balance, geostrophy, from signals that include IGWs. The domain we371

use is between 30◦ - 40◦N and 284◦ - 288◦E for pass number nine situated across the sep-372

arated Gulf Stream path. Missing data and spacing between the swaths were linearly373

interpolated over and when data were missing from over 70% of the swaths, that day was374

dropped and temporally interpolated over between the day before and after via a lin-375

ear spline. The SWOT SSHa fields were further smoothed with a Gaussian filter with376

the standard deviation of 15 km. MrCOSTS was then applied with the period associated377

with each window length prescribed as [9, 10, 11, 30] days and rank of SVD as [4, 4, 6, 10]378

respectively. The slow component was defined as the sum of the background and first379

six bands (0 - 5) out of the 10 (Fig. 2c, Table 1).380

When geostrophy (10) is applied directly to SWOT data, the relative vorticity and381

strain rate take fictitiously large values in magnitude despite the L3 product being some-382
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what smoothed via the de-noising process (Fig. 6e, g, i; Dibarboure et al., 2024); in hind-383

sight, the large magnitudes may have been expected as we are applying (10) to a field384

that includes signals of super-inertial balanced and unbalanced dynamics. The mrCOSTS385

slow component of SSHa, on the other hand, captures the large-scale feature and is much386

smoother than the SWOT data (Fig. 6a, b). The zonal geostrophic velocity from the mr-387

COSTS slow component captures the separated Gulf Stream about 37◦N (Fig. 6d), and388

the fields of relative vorticity and strain rate become smoother and fall within the ac-389

ceptable range of magnitude (O(Ro ≲ 1), Fig. 6f, h; Pedlosky, 1984, 2013; Vallis, 2006).390

Nonetheless, the joint PDF does not adequately capture the skewness towards positive391

relative vorticity values (Fig. 6j). As a reference, the joint PDF computed from daily-392

averaged 0.25◦ gridded AVISO data during April – June, 2023 is shown in Fig. 6k as the393

period that overlaps with the SWOT Cal/Val period; the skewness is only marginally394

captured and the magnitudes are much smaller, indicating that AVISO misses most of395

the frontal features. The spatial correlation between SWOT SSHa and its mrCOSTS re-396

construction is generally higher than 0.9 during the Cal/Val phase (Fig. 6l) but is worse397

than the case with the wave-vortex and HYCOM50 simulations. While there is a hint398

of mrCOSTS detecting the diurnal tidal signal (band nine in Fig. 2c), it is likely that399

the duration of three months with daily resolution (i.e., 102 data points in time) is not400

a sufficient amount of data to robustly estimate AAA from the least-squares fit (5).401

In order to test whether extending the duration of the data would improve the ex-402

traction of geostrophy, we examine the mrCOSTS reconstruction of HYCOM50 SSHa403

snapshot fields taken at daily intervals (∆t = 24 hours) when the duration to construct404

HHH and HHH′ is taken over the three months of August to October (ASO), and five months405

of July to November (JASON). The window lengths were prescribed as [9, 10, 11, 30, 90] days406

and SVD ranks as [4, 4, 6, 10, 18] for the JASON case where 90 days corresponds to sea-407

sonal time scales. MrCOSTS was applied over four levels using the first four parame-408

ters for the ASO case (Table 1). MrCOSTS discovered seven bands in total for the JA-409

SON case (p = 0, 1, · · · , 6; Fig. S1c) and six bands for the ASO case (p = 0, 1, · · · , 5;410

Fig. S1d). We find that in both cases, mrCOSTS is able to reconstruct the HYCOM50411

SSHa fields relatively well; the spatial correlation outside of COI is higher than 0.98 (Fig. 7a).412

For the slow component, the sum of the first five bands were chosen for JASON and of413

the first four bands for ASO in addition to their respective background bands. We again414

diagnose the geostrophic relative vorticity and strain rates from the slow components and415
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the joint PDFs of the two are documented in Fig. 7b, c. Similar to SWOT (Fig. 6j), the416

joint PDF from the ASO case does not present the skewness in relative vorticity. How-417

ever, we find that the JASON case is able to recover the skewness and and the joint PDF418

becomes closer to Fig. 5f. While the SWOT Cal/Val phase is only available for three months,419

this theoretical exercise of five months corroborates our hypothesis that the performance420

of mrCOSTS depends somewhat on the number data points in time to fit (5). This sen-421

sitivity to the volume and quality of data is not unique to DMD but rather universal to422

data-driven methods (e.g. Budach et al., 2022; Chen et al., 2023; Smith et al., 2023; Mo-423

jgani et al., 2024).424

The goals of this paper were to introduce mrCOSTS, a variant of dynamic-mode425

decomposition (DMD), to the oceanographic and earth science community. While machine-426

learning methods have shown some promise in extracting the surface flow kinematics from427

SSH (e.g., Sinha & Abernathey, 2021; H. Wang et al., 2022; Xiao et al., 2023; Gao et al.,428

2024; Archambault et al., 2024; Cutolo et al., 2024; Fablet et al., 2024; Febvre et al., 2024;429

Martin et al., 2024; Lyu et al., 2024), we have opted for DMD here due its interpretabil-430

ity owing to it essentially being a combination of linear-algebraic operations. The fact431

that DMD naturally decomposes the data into frequency components is also well suited432

for disentangling geostrophically balanced motions from IGWs where the two tend to have433

distinct characteristic time scales. We have showcased that by applying mrCOSTS to434

modeled and observed SSHa, its slow bands are usable to diagnose geostrophy. In con-435

trast to other DMD-based methods, mrCOSTS is able to robustly extract spatially co-436

herent spatial modes (Lapo et al., 2025), which are smooth enough to permit spatial deriva-437

tives. The need for scale-separation methods is wide spread in the general earth science438

community; for example, it would be interesting to apply mrCOSTS to long-standing439

problems such as quantifying orographic precipitation patterns (e.g., Buttafuoco et al.,440

2011; Curio & Scherer, 2016; Y. Li et al., 2024) or discovering climate modes (e.g., New-441

man et al., 2016; Dewar et al., 2022; Mishonov et al., 2024; G. Wang et al., 2024; Miyamoto442

& Xie, 2024) and eddy parametrizations (L. Li et al., 2023).443

Future work involves extending our analyses to other geographical regions, the 21-444

day-repeat SWOT orbit where data will be available for longer periods than three months,445

and to extract higher-order balances than geostrophy, viz., quasi- and semi-geostrophy.446

The Southern Ocean may be an appealing region given the overlap amongst SWOT swaths447

increases compared to lower latitudes. While we have purely focused on the geostroph-448
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ically balanced component of the flow in this study, it is true that information on the449

unbalanced motion (e.g., IGWs) is also of significant value (Yadidya et al., 2024; Demat-450

teis et al., 2024; Tchilibou et al., 2025). It is unclear to what extent DMDs can separate451

out IGWs from submesoscale dynamics (or waves from turbulence in general; cf. Chávez-452

Dorado et al., 2024), which tend to be associated with similar time scales, but will be453

an avenue for further investigation.454
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ter products were produced by Ssalto/Duacs and distributed by AVISO+, with support467
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Figure 2. Probability density function (PDF) of the mrCOSTS-derived frequencies in cycles

per day, Im[ωk
j,ℓ]/2π. Wave-vortex SSHa fields were fed every hour to mrCOSTS and applied

in two levels (a). The vertical black dashed lines indicate the frequencies each k-means cluster-

ing has grouped the mrCOSTS modes around for each band p. The top x axis shows the final

mrCOSTS bands, viz. 12 bands in total (p = 0, 1, ..., 11). The histogram is colored from light-to-

dark shading corresponding to clusters from high-to-low frequency. Frequency spectrum of SSHa

in red solid curve is plotted against the right y axis. HYCOM50 SSHa snapshot fields were fed

every three hours (b). The red shading indicates the three-hour cutoff. MrCOSTS discovered

13 bands in total (p = 0, 1, ..., 12). The same but for where instantaneous SWOT data were fed

daily and mrCOSTS discovered 10 bands (p = 0, 1, ..., 9; c). Periodograms were computed every

150 data points along track and 40 data points across track and then spatially averaged in con-

structing the SWOT frequency spectrum.
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Figure 3. Time series of the spatial correlation between the geostrophic component from the

wave-vortex SSH field and mrCOSTS reconstruction of the slow component (a). The black shad-

ing indicates the duration of COI and the x axis shows the number of days of model simulation.

The spatial correlation for the N = 2 case is shown in solid blue and N = 4 case in dashed orange

curves respectively. A snapshot of the mrCOSTS slow component on the same day as in Fig. 1c

when mrCOSTS is applied over two levels (N = 2) (b) and four levels (N = 4) (c). The difference

between the wave-vortex geostrophic component and mrCOSTS slow component (d,e).
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Figure 4. Instantaneous snapshots of SSHa and its mrCOSTS reconstruction on an arbitrary

day. HYCOM50 output of instantaneous SSHa spatially smoothed using a Gaussian filter with

a standard deviation of 10 km (a), the slowest (background) mrCOSTS band where SSHa fields

were fed three hourly (b), mrCOSTS extraction of sub-inertial component (c), residual between

HYCOM50 SSHa and sub-inertial component (d). The SWOT Cal/Val tracks of pass number

9 and 22 are shown in panel (a), which partially overlap with the HYCOM50 domain analyzed

here. MrCOSTS extraction of the sub-inertial component where SSHa fields were fed 12 hourly

(e), and its residual (f). Time series of spatial correlation between SSHa and mrCOSTS recon-

structions (g). The solid blue curve documents the correlation between instantaneous SSHa and

total mrCOSTS reconstruction where SSHa fields were fed three hourly. The orange-dashed

and green-dotted curve shows the correlation between daily-averaged SSHa and sub-inertial mr-

COSTS reconstruction where data were fed three and 12 hourly respectively. The black shading

indicates the duration of COI.
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Figure 5. Spatial maps of relative vorticity normalized by the local Coriolis frequency ζ/f ,

viz. the local Rossby number Ro from HYCOM50. Panel (a) shows Ro diagnosed from an instan-

taneous SSHa field spatially smoothed using a Gaussian filter with a standard deviation of 10 km,

and when the hourly SSHa fields are daily averaged to diagnose Ro (b). Instantaneous mrCOSTS

reconstructions of the slow component of Ro when data are fed every three and 12 hours are

documented in panels (c) and (d). Joint probability density functions (PDFs) of Ro and strain

rates normalized by f for each case over the three months of August – October (e - h). A spatial

map of Ro and joint PDF of Ro and strain rate at the surface computed from daily-averaged and

spatially-smoothed total velocity using a Gaussian filter with a standard deviation of 10 km is

shown for reference (i, j).
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Figure 6. L3 SWOT observation of SSHa on June 21, 2023 (a), mrCOSTS reconstruction of

the slow component of the spatially filtered SSHa (b), and the difference between the two (c).

Missing data and spacing between the swaths are interpolated over for SWOT SSHa and shown

in a different colormap in panel (a). Zonal geostrophic velocity diagnosed from the mrCOSTS

slow component (d). Relative vorticity ζ and strain rate |α| normalized by f diagnosed from the

SWOT data and mrCOSTS slow component (e - f). Geostrophic zonal velocity, relative vorticity

and strain rate from daily-averaged 0.25◦ gridded AVISO are shown in lighter shadings in con-

trast to mrCOSTS. Joint PDF of ζ/f and |α|/f diagnosed from raw SWOT data, mrCOSTS

slow component and AVISO (i - k). The SWOT fields used in panels (a,e,g,i) were not spatially

filtered as the L3 product a priori has some smoothing applied (Dibarboure et al., 2024). Time

series of spatial correlation between SWOT SSHa and its mrCOSTS reconstructions (l). The

dashed blue curve documents the correlation between instantaneous SSHa and total mrCOSTS

reconstruction. The orange-solid curve shows the correlation between SSHa and mrCOSTS slow

component. The green dotted curve, plotted against the right y axis, shows the percentage of

available data per snapshot.
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a)

c)b)

Figure 7. Time series of spatial correlation between HYCOM50 SSHa and its total recon-

struction by mrCOSTS when data is fed 24 hourly (a). The black shading indicates the duration

of COI for the Jul., Aug., Sept., Oct., and Nov. (JASON) case. Joint PDFs of relative vorticity

and strain rate normalized by the local Coriolis frequency for the JASON (b) and ASO case (c).
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