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Abstract 19 

This study utilizes Deep Neural Networks (DNN) to improve the K-Profile 20 

Parameterization (KPP) for the vertical mixing effects in the ocean’s surface boundary layer 21 

turbulence. The DNNs were trained using 11-year turbulence-resolving solutions, obtained by 22 

running a large eddy simulation model for Ocean Station Papa, to predict the turbulence velocity 23 

scale coefficient and unresolved shear coefficient in the KPP. The DNN-augmented KPP 24 

schemes (KPP_DNN) have been implemented in the General Ocean Turbulence Model 25 

(GOTM). This implementation is stable for long-term integration and as efficient as existing 26 

variants of KPP schemes. Three different KPP_DNN schemes, varying in input and output 27 

variables, have been developed and trained. The performance of models using the KPP_DNN 28 

schemes is compared with that of those using popular deterministic first-order and second-29 

moment closure turbulent mixing parameterizations. Solution comparisons show that the 30 

simulated mixed layer is cooler and deeper, aligning closely with observations when wave 31 

effects are included in parameterizations. In the KPP framework, changes to the velocity scale of 32 

unresolved shear, which is used to calculate mixed layer depth, have a larger impact on the 33 

simulated mixed layer than do changes to the magnitude of diffusivity. In the KPP_DNN, 34 

changes to unresolved shear depend on not only on wave forcing, but also on the mixed layer 35 

depth and buoyancy forcing. 36 

Plain Language Summary 37 

The uppermost tens of meters of the ocean, known as the ocean surface boundary layer, 38 

are rich in intricate and chaotic fine-scale (cm to 100s m) ocean currents referred to as 39 

turbulence. These currents, spanning from centimeters to hundreds of meters, play pivotal roles 40 

in shaping the oceanic environment and influencing Earth's climate dynamics. Despite their 41 
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significance, accurately simulating these fine-scale ocean currents remains beyond the 42 

capabilities of current and foreseeable supercomputing resources. Consequently, simplified 43 

formulas derived from fundamental principles are commonly employed to approximate these 44 

currents in ocean and climate models. However, these approximations still cannot cover all types 45 

of choppy currents and uncertainties in these approximations represent a substantial source of 46 

bias in contemporary ocean and climate modeling endeavors. In this study, we enhance one of 47 

the prevalent physics-based approximations of fine-scale turbulent currents using machine 48 

learning techniques. Our tests show that integrating machine learning in physics-based 49 

approximation is stable and efficient and is suitable for use in ocean and climate models. 50 

1 Introduction 51 

The ocean surface boundary layer (OSBL) is a thin layer below the ocean surface, 52 

typically extending tens to a hundred meters in thickness, and is strongly affected by external 53 

forcing such as wind, waves, and net heat fluxes. Ocean currents within the OSBL are highly 54 

turbulent, with the scale of these turbulent currents ranging from centimeters to several hundred 55 

meters. These turbulent currents have a profound impact on ocean dynamics, both within and 56 

beyond the OSBL, playing a significant role in sustaining marine ecosystems and shaping global 57 

climates. However, despite advances in oceanography, accurately simulating these turbulent 58 

processes remains a formidable challenge, particularly in regional and global ocean models, 59 

where directly resolving these dynamics is computationally infeasible in the foreseeable future 60 

(Fox-Kemper et al., 2019; Fox-Kemper et al., 2014).  61 

In realistic ocean and climate models, the turbulent flux of a variable x, i.e., 𝑤′𝑥′, is 62 

calculated as:  63 
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𝑤′𝑥′ = −𝐾𝑥

𝜕𝑥

𝜕𝑧
(1) 64 

Here, 𝑥 represents a property in ocean water such as momentum, temperature, or material 65 

concentrations; 𝑧 is the vertical coordinate; and 𝑤 is the vertical velocity of water. The overbar 66 

in equation 1 represents the ensemble average, while the prime denotes the turbulent fluctuation, 67 

i.e., 𝑥’ =  𝑥 − 𝑥. 𝐾𝑥 in equation 1 is the eddy viscosity or diffusivity, represented by simplified 68 

physics-based formulas called parameterizations. These parameterizations incorporate empirical, 69 

tunable coefficients. In early studies, the coefficients were tuned using in situ observations of 70 

temperature and salinity (e.g., Large et al., 1994) . However, in-situ observations are modulated 71 

by turbulent currents as well as submesoscale to large-scale currents. Over the past 20 years, 72 

turbulence-resolving simulations of OSBL turbulence, using Large Eddy Simulation (LES) 73 

models, have become available, with LES solutions being used to derive empirical parameters 74 

(e.g., Harcourt, 2015; van Roekel et al., 2012). LES models simulate OSBL turbulence 75 

exclusively, excluding submesoscale to large-scale processes, thus are superior to tune 76 

parameterizations of turbulent mixing. 77 

Turbulent mixing parameterization schemes typically fall into two categories. The first 78 

category is the first-order closure scheme, in which parameters are directly related to the forcing 79 

conditions and water property profiles. A well-known example is the K-profile parametrization 80 

(KPP) scheme. The KPP scheme was initially proposed for turbulence in atmospheric boundary 81 

layers  (Troen & Mahrt, 1986) and later adapted for the OSBL (Large et al., 1994). Due to its 82 

computational efficiency and stability, the KPP scheme is widely used in realistic simulations for 83 

regional and global oceans (e.g., Belcher et al., 2012; Y. Li et al., 2017; Liang et al., 2022; 84 

McWilliams & Sullivan, 2000; van Roekel et al., 2018; van Roekel et al., 2012; Vertenstein et 85 
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al., 2012; Warner et al., 2005). The second category is the second-momentum closure (SMC) 86 

scheme, where turbulent diffusivity and turbulent viscosity are derived from turbulence statistics 87 

(kinetic energy, length scale, and dissipation rate) and empirically calculated in the scheme 88 

(Kantha & Clayson, 1994; Reichl & Hallberg, 2018; Umlauf & Burchard, 2003). The SMC 89 

scheme, being computationally more expensive than the KPP scheme, is more commonly used in 90 

simulations of coastal oceans, where the current environment is more complicated (e.g., Warner 91 

et al., 2005) than in global and regional oceans. Recent studies have revised both the KPP and 92 

SMC schemes to include enhanced turbulent mixing effect due to wave-driven Langmuir 93 

turbulence, i.e., KPPLT and SMCLT. Studies have shown that the use of KPPLT and SMCLT 94 

generally improves the simulations of sea surface temperature and the mixed layer depth (MLD) 95 

for global (Q. Li et al., 2016) and regional oceans (Ali et al., 2019). However, a recent study (Q. 96 

Li et al., 2019) examining 11 mixing parameterization schemes, including KPP, SMC, KPPLT, 97 

and SMCLT, found substantial differences in the solutions provided by these methods, indicating 98 

persistent biases across all schemes.  99 

Further refining traditional turbulent mixing parameterizations is challenging. In the 100 

upper ocean, turbulent mixing is driven by diverse combinations of wind, wave, and buoyancy 101 

conditions. However, deterministic parameterization schemes were developed based on a small 102 

subset of the realistic conditions across the global ocean (e.g., Fig.1 in Q. Li et al., 2019). 103 

Furthermore, deterministic formulas for empirical coefficients lack the flexibility to account for 104 

the vast combinations of wind, wave, and buoyancy conditions.  105 

In light of these challenges, recent efforts have begun exploring alternative approaches to 106 

take advantage of the recent development of machine learning techniques, especially deep neural 107 

networks (DNNs), to enhance the representation of the mixing effects of OSBL turbulence. 108 
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DNNs utilize extensive data as truth to establish non-linear relationships between the inputs and 109 

predicted outcomes. Early attempts aimed to replace traditional mixing parameterization by 110 

directly predicting turbulent fluxes using DNNs (e.g., Gentine et al., 2018; Liang et al., 2022; 111 

Rasp et al., 2018). While these DNNs have shown promising results in predicting turbulent flux 112 

profiles, ensuring numerical stability when integrating them with realistic climate models for 113 

long-term use poses challenges (Rasp, 2020). 114 

 An alternative approach is to retain the physics-based framework in traditional 115 

parameterizations and use DNN to predict parameters that are uncertain in those 116 

parameterizations. Sane et al. (2023) trained DNNs to predict profiles of eddy diffusivity in the 117 

OSBL under the framework of the energetics-based planetary boundary layer (ePBL, Reichl & 118 

Hallberg, 2018) using simulations based on a SMC scheme as the truth. The authors further 119 

coupled the ePBL-DNN model into the Modular Ocean Model (MOM, e.g., Adcroft et al., 2019), 120 

and demonstrated its stability for long-term integration. Zhu et al. (2022) trained DNNs to 121 

predict mixing coefficients in the interior ocean (below the OSBL) based on in-situ 122 

microstructure observations at the equatorial Pacific Ocean. By implementing it into the MOM, 123 

they demonstrated that incorporating a DNN into the model reduces cold biases in the equatorial 124 

Pacific. The study, however, did not attempt to improve parameterizations on the effects of 125 

OSBL turbulence. 126 

However, the DNN models in those two studies are not based on LES solutions and have 127 

not targeted the popular KPP model. In this study, we aim to bridge the gap by using high-128 

resolution LES simulations to develop DNN models capable of predicting key turbulent mixing 129 

parameters in the widely used KPP model. The models in this study are designed to enhance the 130 

realism of OSBL simulations within the framework of the KPP scheme, without altering 131 
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fundamental equations or time-stepping mechanisms, thus facilitating straightforward integration 132 

into existing ocean models. The rest of the paper is organized as follows: Section 2 presents the 133 

framework of the DNN-augmented KPP (KPP_DNN) and outlines the data used to train the 134 

DNNs. Section 3 provides details on the implementation of the DNN-augmented KPP schemes 135 

into the General Ocean Turbulence Model (GOTM). Section 4 describes how the GOTM is 136 

configured with traditional physics-based parameterization and KPP_DNN. Section 5 evaluates 137 

the performance of KPP_DNN in comparison to traditional parameterization schemes. Section 6 138 

summarizes the major findings of the study. 139 

2 The K-Profile Parameterization augmented by Deep Neural Networks (KPP_DNN) 140 

2.1 Model Description 141 

In the KPP framework (Large et al., 1994), the expression for viscosity or diffusivity 𝐾𝑥 142 

is given by: 143 

𝐾𝑥(𝜎) = 𝑤𝑥(𝜎)ℎ𝐺𝑥(𝜎) (2) 144 

 Here, 𝑤𝑥 is a velocity scale related to the surface forcing and the Monin-Obukhov 145 

similarity theory, ℎ is the surface boundary layer depth, and 𝐺𝑥(𝜎) is a dimensionless shape 146 

function, with 𝜎 = 𝑧/ℎ the depth normalized by ℎ. The OSBL depth ℎ is the depth to which 147 

OSBL turbulence reaches. In low and mid-latitudes, where mixed layers are relatively shallow, 148 

the OSBL depth equals the MLD. In high-latitude oceans where the mixed layer is deep, the 149 

OSBL is limited by the earth’s rotation and is thinner than the mixed layer.  150 

In mixing parameterizations, the OSBL depth ℎ is typically diagnosed by identifying the 151 

depth at which the Richardson number (Ri), a measure of the relative importance between shear 152 

and stable stratification, exceeds a critical value Ric. This criterion is based on linear stability 153 
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analysis, which shows that stably stratified shear flow is unstable and turbulent mixing quenches 154 

when the gradient Ri exceeds a critical value of 0.3, i.e., Ri > Ric = 0.3.  Below the OSBL depth, 155 

Ri is larger than Ric and the flow is stable. Above the depth, Ri is smaller than Ric and the flow is 156 

turbulent. In the KPP scheme, the bulk Richardson number 𝑅𝑖𝑏(𝑧) is used and the critical bulk 157 

Richardson number is set to be 0.3 (Large et al., 1994). 𝑅𝑖𝑏(𝑧) is related to ocean current and 158 

stratification as,  159 

𝑅𝑖𝑏(𝑧) =
𝑧 (𝑏𝑟 − 𝑏(𝑧))

(𝒖𝑟 − 𝒖(𝑧))
2

+ 𝑈𝑡
2(𝑧)

(3) 160 

Here,  𝑏 is the buoyancy, defined as 𝑏 = 𝑔[𝛼𝜃(𝜃 − 𝜃𝑟) − 𝛽𝑠(𝑠 − 𝑠𝑟)], with 𝜃 the 161 

potential temperature, 𝑠 the salinity, 𝛼𝜃 and 𝛽𝑠 the corresponding thermal and saline expansion 162 

coefficients, respectively; 𝒖 is the water current vector. The subscript 𝑟 denotes the vertically 163 

averaged value over the surface layer. The effect of turbulence is represented using the velocity 164 

scale of the unresolved shear 𝑈𝑡
2(𝑧):  165 

𝑈𝑡
2(𝑧) =

𝐶𝑣𝑁(𝑧)𝑤𝑥(𝑧)|𝑧|

𝑅𝑖𝑐

(4) 166 

where 𝐶𝑣 is a dimensionless coefficient and 𝑁 is the Brunt-Väsälä frequency.  167 

Recent studies have shown that the effects of non-breaking waves greatly modulate 168 

turbulent fluxes in the OSBL, either enhancing or suppressing turbulent fluxes depending on the 169 

alignment between wind and waves (McWilliams et al., 2014; van Roekel et al., 2012). When 170 

wind and waves are largely aligned, as is common across the global ocean, turbulence is 171 

enhanced by wave-driven Langmuir turbulence. When waves are significantly misaligned with 172 

the wind, as occurs when the swell is strong, turbulence is suppressed. Several recent studies 173 

(e.g., Q. Li & Fox-Kemper, 2017; Q. Li et al., 2019; McWilliams & Sullivan, 2000; van Roekel 174 

et al., 2012) have been devoted to including wave effects into the KPP framework. In those 175 
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parameterizations, referred to as KPPLT hereafter, the turbulent velocity scale (𝑤𝑥), and the 176 

unresolved shear velocity scale, 𝑈𝑡
2(𝑧), are modified as, 177 

𝐾𝑥(𝜎) = 𝜖𝑤𝑥(𝜎)|ℎ|𝐺𝑥(𝜎) (5) 178 

𝑈𝑡
2(𝑧) = 𝜂𝑈𝑡

2(𝑧)|𝐿𝑀𝐷 (6) 179 

where 𝑈𝑡
2(𝑧)|𝐿𝑀𝐷 is the term calculated using a formula in Large et al. (1994), the velocity scale 180 

coefficient 𝜖 and the unresolved shear coefficient 𝜂 are deterministic functions of wind and wave 181 

forcing (e.g., Q. Li & Fox-Kemper, 2017; Reichl et al., 2016) 182 

In this study, these two coefficients will be determined by Deep feedforward Neural 183 

Networks (DNNs), as opposed to deterministic functions in deterministic formulas in existing 184 

studies. The DNN augmented parameterization will be called KPP_DNN hereafter. 185 

A DNN is made up of multiple densely connected layers, including one input layer, one 186 

output layer, and multiple hidden layers (Figure 1). Each layer includes multiple neurons. 187 

Neurons between layers are connected by the following relationship:  188 

𝑋𝑖,𝑗 = 𝑓 ( ∑ 𝑤𝑘,𝑖,𝑗−1𝑋𝑘,𝑗−1 + 𝑏𝑘,𝑖,𝑗−1

𝑁𝑗−1

𝑘=1

) (7) 189 

where  𝑋𝑖,𝑗 means the 𝑖th neuron in the 𝑗th layer, 𝑁𝑗 is the number of neurons in the 𝑗th layer. 190 

𝑤𝑘,𝑖,𝑗−1 and 𝑏𝑘,𝑖,𝑗−1 are the weight and bias that link neuron 𝑋𝑘,𝑗−1 to neuron 𝑋𝑖,𝑗, respectively.  191 

In this study, the Leaky Rectified Linear Unit function (Leaky ReLU, 𝛼(𝑥) = max(0.1𝑥, 𝑥)) is 192 

used as the activation function. 193 
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 194 

Figure 1. The architect of a Deep Neural Network (DNN) model 195 

The DNN's input layer consists of water-column variables, including potential 196 

temperature profiles (𝜃), salinity profiles (𝑠), ocean currents, and key OSBL turbulence drivers, 197 

including wind stress (𝜏𝑥, 𝜏𝑦), shortwave radiation at the ocean surface (𝑆𝑤), net heat flux 198 

excluding short wave radiation (𝑄𝑓), the rate of evaporation minus precipitation (𝑄𝑠), vertical 199 

profiles of Stokes drift associated with ocean surface waves and the OSBL depth from the 200 

previous time step. The output layer consists of a single neuron in each DNN model, predicting a 201 

specific parameter. Specifically, we have two different DNN models based on the output: model 202 

𝐷𝜖 to predict the turbulent velocity scale coefficient (𝜖), and model 𝐷𝜂 to predict the unresolved 203 

shear coefficient (𝜂). 204 

The DNN model utilizes a vast array of computations characterized by nonlinear 205 

activation functions with distinct weights and biases. Integrating a well-tuned DNN model into a 206 

traditional physics-based parameterization scheme not only preserves the computational stability 207 

and efficiency of a traditional physics-based model but also enables a more flexible and effective 208 

non-linear mapping from input variables to output parameters than what deterministic formulas 209 

could achieve. 210 
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2.2 Data Generation and Curation 211 

The data used to develop and test the KPP_DNN schemes are turbulence-resolving 212 

simulations for Ocean Station Papa (OSP) using the NCAR-LES model for the OSBL (e.g., 213 

Sullivan & McWilliams, 2010). OSP (50°𝑁, 145°𝑊, see Figure 2a) is located within the 214 

Northern Pacific subpolar gyre. With a long history of continuous atmospheric and 215 

oceanographic in-situ observations (Cronin et al., 2023; Whitney & Tortell, 2006), OSP has been 216 

served as a pivotal site for monitoring ocean climate (e.g., Bond et al., 2015; R. E. Thomson & 217 

Tabata, 1987), understanding ocean physical and biogeochemical processes, and developing 218 

parameterization schemes extensively employed in diverse ocean models (e.g., Chalikov, 2005; 219 

Craig & Banner, 1994; Gaspar et al., 1990; Kantha & Clayson, 1994; Large et al., 1994). Figures 220 

2b and 2c present the probability of OSBL turbulence regime at OSP based on the observed 221 

forcing conditions. The most common turbulence regime at OSP is a mix of the three types of 222 

turbulence. There are periods when Langmuir turbulence dominates, while convection or shear-223 

driven turbulence seldom dominates. Different from the global ocean (compare the blue and 224 

black contours), the OSBL at OSP is seldom strongly convective or strongly stabilizing. LES 225 

models are currently the state-of-the-art tool to study OSBL and submsoscale turbulence (e.g., 226 

Bodner et al., 2020; Fan et al., 2018; Kukulka et al., 2009; Skyllingstad & Denbo, 1995; Yuan & 227 

Liang, 2021), and to develop parameterizations for those processes (e.g., Bodner et al., 2023; 228 

Liang et al., 2013; Liu et al., 2022; Sinha et al., 2015). 229 
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 230 

Figure 2. Panel (a) shows the location of Ocean Station Papa in the north Pacific Ocean. Panels 231 

(b) and (c) are regime diagrams showing the forcing conditions at OSP between 2010 and 2022. 232 

Panel (b) corresponds to conditions of destabilizing net surface buoyancy forces, whereas panel 233 

(c) is for conditions under stabilizing buoyancy forces. The thin solid contours are the probability 234 

(30%, 60%, 90% and 99%) of a certain parameter combination in the global ocean. The light 235 

black dots are the conditions in OSP, while the dark blue contours are the probability (30%, 236 

60%, 90% and 99%) in OSP. In panel (b), the thin dashed contours show turbulent dissipation 237 

rate, and the thick solid grey lines encompass regimes where one of the three types of turbulence 238 

contributes over 90% to total dissipation. In panel (c), the thick grey line is the maximum 239 

equilibrium −ℎ/𝐿𝐿 value according to Pearson et al. (2015). 240 

The use of the NCAR-LES model to generate data is similar to that reported in Liang et 241 

al. (2017) and Liang et al. (2022): The domain of the LES model is configured with 160 242 

uniformly distributed grids, spanning 300m in each horizontal direction, Vertically, the LES 243 

model features 128 stretched grids across a 200m depth, with the finest grid equal 0.2m at the 244 

ocean surface. The LES model was driven by a combination of observed hourly meteorological 245 

(Cronin et al., 2015), wave conditions (J. Thomson et al., 2013) and the derived surface flux 246 

products at OSP from September 2010 to December 2022. These inputs include wind stresses, 247 
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wave conditions, shortwave radiation, net surface heat flux (excluding shortwave radiation), and 248 

the rate of evaporation minus precipitation, at OSP from September 2010 to December 2022. 249 

Periods when the observational wave data were not available were excluded from LES 250 

simulations. The LES simulations were restarted every 10 days, and initial conditions of each 251 

restart were derived from observed water column temperature and salinity profiles linearly 252 

interpolated to LES vertical grids. The restart procedure is to ensure that the LES solutions do 253 

not deviate from the true state of the ocean, as large- and mesoscale processes that also modulate 254 

the physical states of the upper ocean at the station (Cronin et al., 2015) are not resolved by the 255 

LES model. Comparisons with observation show that the LES simulations closely align with 256 

reproduces observed upper-ocean states with this approach (see Figure 3). In total, 367 LES 257 

simulations were conducted.  258 

The turbulence-resolving LES solution dataset differs from that used by Liang et al. 259 

(2022) in two ways: Firstly, the simulation period is longer, spanning from 2010 to 2022 in the 260 

current study, as opposed to 2010 to 2019 in Liang et al. (2022), thereby offering more data for 261 

model training and testing. Secondly, shortwave radiation penetrates the OSBL in the current 262 

study while shortwave radiation was applied only at the ocean surface in Liang et al. (2022). The 263 

shortwave radiation at depth z, 𝑄𝑠𝑤(𝑧), is calculated as  264 

𝑄𝑠𝑤(𝑧) = 𝑄𝑠𝑤,0(𝑟 𝑒𝑧/𝜇1 + (1 − 𝑟) 𝑒𝑧/𝜇2 ) (8) 265 

where 𝑄𝑠𝑤,0 is the net shortwave radiation at the ocean surface. 𝑟 = 0.58, 𝜇1 = 0.35 and 266 

𝜇2 = 23 are three empirically determined constants (Paulson & Simpson, 1977) to fit the data in 267 

Jerlov (1976). The penetrative shortwave radiation is more realistic than a surface shortwave 268 

flux. In LES simulations, the penetrating shortwave radiation led to thicker OSBLs and more 269 

modest increases in sea surface temperature when compared to simulations driven by shortwave 270 
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radiation only at the ocean surface. The use of penetrative shortwave radiation is also consistent 271 

with realistic ocean models. Therefore, the KPP_DNN trained using the set of LES solutions 272 

could be implemented into realistic ocean models. 273 

 274 

Figure 3. Comparison between the LES solutions and in situ observations in Ocean Station Papa 275 

(OSP). (a) mixed layer depth (MLD); (b) mean temperature in the mixed layer; (c) mean salinity 276 

in the mixed layer. 277 

Ensemble-averaged profiles of temperature, salinity, velocities, turbulent kinetic energy 278 

(TKE), and their turbulent fluxes were calculated online and output every 30 minutes. The depth 279 

of the OSBL ℎ was diagnosed as the depth at which the vertical gradient of momentum flux 280 

decreases to 2 × 10−7 𝑚/𝑠2.  𝜂 was then diagnosed using Equations 4 and 6 with a 𝑅𝑖𝑐 = 0.3. 281 
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𝑤𝑥 and 𝐺(𝜎) in Equation 5 were first calculated using the LES solutions and formulas detailed in 282 

Large et al. (1994). 𝜖 was then obtained by minimizing the difference between the momentum 283 

fluxes using equation 1 and the output momentum flux from LES solutions. 284 

2.3 Model Training 285 

The predicted coefficients 𝜖 in model 𝐷𝜖 and 𝜂 in model 𝐷𝜂 were compared with 𝜖 and 𝜂 286 

diagnosed from LES solutions as detailed in section 2.2. Mean square errors served as the loss to 287 

update trainable parameters in the DNNs. The DNNs were trained using TensorFlow and Keras 288 

within the R programming environment. The architecture of these DNNs varied significantly, 289 

encompassing a range of different layers (1, 2, 4, 6, 8, 12) and neurons per layer (2, 4, 8, 16, 32), 290 

to explore the optimal structure for our specific application. The Adam optimizer was employed 291 

across all models. Each model was trained for 1000 epochs. To avoid overfitting, the learning 292 

rate was reduced by a factor of 0.1 whenever a plateau in validation loss was detected during the 293 

training process. The criterion for selecting the best model was based on the smallest validation 294 

loss, a standard measure of model accuracy on unseen data, ensuring that the chosen model has 295 

the highest generalization capability.  296 

3 Implementation of KPP_DNN in the General Ocean Turbulence Model (GOTM) 297 

The General Ocean Turbulence Model (GOTM, Burchard et al., 1999) is a single-column 298 

model designed to examine the behavior of various turbulent mixing parameterization schemes 299 

in the OSBL. It provides a versatile framework, allowing for the straightforward compilation and 300 

execution of different OSBL turbulent mixing parameterization schemes, making it the ideal 301 

testbed for developing and testing mixing parameterizations. The current GOTM model includes 302 
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a variety of first-order and second-moment closure schemes, allowing for the comparison of 303 

different schemes within the same framework.  304 

Adding to the capability of the GOTM, this study implements the trained DNNs, their 305 

structure and trainable parameters, into the model. The GOTM, like most earth system models, is 306 

coded exclusively in Fortran, while DNN models are typically written in high-level 307 

programming languages like Python and R, utilizing deep learning libraries such as Keras (Gulli 308 

& Pal, 2017; Ketkar & Ketkar, 2017). There are two approaches that a DNN model could be 309 

implemented in a Fortran code: The first is to hard-code the entire DNN structure and trainable 310 

parameters directly into Fortran (e.g., Brenowitz & Bretherton, 2018; Gagne et al., 2020). The 311 

other approach, adopted in this study, is to overcome the computer language interoperability by 312 

incorporating a software library that connects Fortran and Python environments, such as the 313 

Fortran-Keras Bridge (FKB, Ott et al., 2020) used in this study.  314 

The process involves converting a trained DNN using Keras, saved in HDF format, into 315 

an ASCII file offline. This ASCII file is specifically structured for easy interpretation by the 316 

FKB. In a FKB informed Fortran program, the DNN model, including its structure and weights, 317 

is reconstructed by loading this ASCII file. During each timestep of integration in the GOTM, 318 

the necessary input array, composed of outputs from the GOTM model and forcing conditions, as 319 

detailed in section 2.3, was normalized and fed into the loaded DNN model. Subsequently, the 320 

DNN's predictions were then denormalized and integrated back into GOTM to compute the 321 

enhancement factors in equations 6. 322 

4 Model Configurations 323 

Three different KPP_DNNs were compared against seven existing physics-based 324 

parameterizations (Table 1) using the GOTM. The three KPP_DNNs vary in complexity. In 325 
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KPP_DNN1, only the coefficients for the velocity scale coefficient 𝜖 predicted by 𝐷𝜖 were 326 

utilized. In KPP_DNN2a, both the velocity scale coefficient 𝜖 predicted by 𝐷𝜖 and the 327 

unresolved shear coefficient 𝜂 predicted by 𝐷𝜂 were used. Wave-induced stokes profiles were 328 

not included as inputs of the KPP_DNN2a. KPP_DNN2b was the same as KPP_DNN2a but 329 

additionally incorporated Stokes profiles as inputs. Since most ocean models are not yet coupled 330 

with wave models, it is expected that KPP_DNN2a will be more extensively utilized in existing 331 

ocean models.  332 

Seven well-known traditional deterministic parameterizations were also selected for 333 

comparison (Table 1). The KPP_LMD is the basis of KPP schemes and does not incorporate the 334 

enhancement of non-breaking waves. KPPLT_VR12 adds the enhancement of non-breaking 335 

wave effects only to the turbulent velocity scale but leaves the unresolved shear component 336 

unchanged. KPPLT_LF17 builds on KPPLT_VR12 and includes modification on both the 337 

velocity scale and the unresolved shear components. KPPLT_RW16 is similar to KPPLT_LF17, 338 

but formulas and coefficients that modify velocity scale and the unresolved shear were tuned 339 

using LES solutions under hurricane conditions, thus has a stronger enhancement than 340 

KPPLT_LF17. It should be noted that all three KPPLT schemes have considered the effects of 341 

wind-wave misalignment. Across the global oceans, wind and waves are often misaligned (e.g., 342 

Abolfazli et al., 2020; Hanley et al., 2010). When waves align with the wind, Langmuir 343 

turbulence enhances OSBL turbulence. When waves oppose the wind, OSBL turbulence is 344 

suppressed (e.g., McWilliams et al., 2014). All KPPLT schemes were tuned using LES solutions.  345 

SMC_KC94 is the second closure model tuned using data over at a few different 346 

locations across the global oceans. This scheme does not include the non-breaking wave effects. 347 

SMCLT_H15 generalizes SMC_KC94 to incorporate the impact of non-breaking waves by 348 
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including the Stokes profiles in the governing equations. Coefficients in the SMCLT_H15 349 

scheme were tuned using LES solutions.  350 

The performance of the seven traditional parameterizations and the three variants of 351 

KPP_DNN schemes is compared using the GOTM for the year 2011 to 2016. The GOTM 352 

simulations are divided into two sets. Both sets of simulations are driven by observed 353 

meteorological and wave conditions. They differ by the surface buoyancy fluxes used to drive 354 

the model. In the first set of simulation (set 1), surface buoyancy flux products at OSP provided 355 

by Pacific Marine Environmental Laboratory (PMEL), are used as input. Those fluxes were 356 

calculated using the Coupled Ocean-Atmosphere Response Experiment (COARE) algorithm 357 

with the observed ocean and atmosphere conditions. In the second set of simulations (set 2), 358 

surface buoyancy fluxes are calculated using the same COARE algorithms online during the 359 

GOTM simulations. The online flux calculation is based on observed meteorological condition 360 

and the simulated sea surface temperature (SST) and sea surface salinity (SSS). The approach in 361 

the pre-calculated surface buoyancy flux has been commonly used in studies aiming at 362 

improving or comparing mixing parameterization schemes (e.g., Q. Li et al., 2019). In this model 363 

configuration, forcing conditions are identical among different simulations and the difference in 364 

solutions are purely due to mixing parameterizations. The online calculation of surface buoyancy 365 

flux in the second set of simulation is consistent with that in most realistic ocean simulations 366 

using regional and global models (e.g., Chassignet et al., 2020). In simulations driven by pre-367 

calculated buoyancy fluxes, corrected fluxes to nudge the simulated SST and SSS to their 368 

climatological states are usually imposed to prevent the long-term drift in the solutions (e.g., 369 

Barnier et al., 1995). With this approach, however, the surface buoyancy flux is different among 370 

simulations using different mixing parameterizations. The GOTM simulations are restarted at the 371 
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beginning of each year using observed temperature and salinity profiles as initial conditions. In 372 

each simulation, outputs recorded at every 30 minutes. It should be noted that the GOTM with all 373 

parameterizations could be integrated for a full 6-year period without any stability issue. 374 

However, restarting at the beginning of each year mitigates the long-term drift in the solution due 375 

to the exclusion of larger-scale processes in the 1-D vertical column model (see Figure S1 in 376 

supporting information). 377 

 378 

Table 1. List of parameterization names and the references for the deterministic parameterization 379 

schemes compared in this study. 380 

Parameterization Name References 

KPP_LMD Large et al. (1994) 

KPPLT_VR12 van Roekel et al. (2012)  

KPPLT_RW16 Reichl et al. (2016)  

KPPLT_LF17 Q. Li and Fox-Kemper (2017)  

SMC_KC94 Kantha and Clayson (1994)  

SMCLT_H15 Harcourt (2015) 

 381 

5 Results 382 

5.1 Solution Comparisons 383 

Figure 4 shows the evolution of surface forcing and ocean temperature profiles calculated 384 

using various mixing parameterizations for the year 2013 using pre-calculated surface buoyancy 385 

flux. Forcing conditions are identical for these solutions. Both wind and buoyancy flux exhibit 386 

distinct seasonal variability. Winds are weaker and stabilizing surface buoyancy flux prevails 387 

from March to early September than the rest of the year. During winter, there were multiple 388 
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storms characterized by short-term and significant strengthening in both wind and destabilizing 389 

surface buoyancy flux. For example, during the cold front in late September, the daily average 390 

wind speed doubled within a single day and remained above 12 m/s for approximately one week. 391 

Figure 4b displays the temperature profiles calculated using KPP_LMD. From January to 392 

March, there is minimal variability in the simulated MLD and temperature. The simulated mixed 393 

layer was relatively deep, close to 100 m, and the mixed layer temperature was around 5°C. The 394 

upper ocean re-stratified quickly in April. The MLD shallowed from -100 m to -20 m during 395 

April. However, the warming of the mixed layer during the month is relatively modest, about 396 

2°C. The mixed layer continued to warm, reaching a maximum temperature of 17.6°C in early 397 

September. Since then, the mixed layer cooled and deepened. It should be noted that a marine 398 

heatwave, famously known as “the Blob”, started in the winter of 2013/2014 (Bond et al., 2015; 399 

Di Lorenzo & Mantua, 2016) resulting in a shallower and warmer mixed layer at the end of 2013 400 

than the beginning of the year. In addition to the seasonal cycle, rapid mixed layer cooling and 401 

deepening associated with storms are also evident, leading to short-term variability in both mixed 402 

layer temperature and depth. For example, storms in early June led to notable mixed layer 403 

cooling and deepening during the longer-term seasonal warming of the mixed layer during 404 

summer, while a storm in late September accelerated mixed deepening and cooling during fall. 405 
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 406 

Figure 4. Comparison of the potential temperature profile evolutions at Ocean Station Papa in 407 

the year 2013 using various simulation schemes. Forcing conditions are identical in these 408 

simulations (set 1). (a) Time series for observed 10-meter wind speeds (thin red line) and net 409 

surface buoyancy fluxes (thin blue line). The smoothed thick lines show the daily averaged 410 
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values. (b) potential temperature evolution calculated using KPP_LMD. Panels (c) to (j) show 411 

the difference in simulated temperature from KPP_LMD for all other parameterizations. The 412 

mixed layer depth (MLD), defined by the depth at which the density exceeds the surface value 413 

by 0.03 kg/m³, from KPP_LMD is indicated by thin red lines in panels (b) to (j), whereas the 414 

mixed layer depths from other schemes are delineated by blue lines in panels (c) to (j). 415 

Figures 4c to 4j show the differences between different parameterizations and 416 

KPP_LMD. In KPPLT_VR12 and KPP_DNN1, wave effects are incorporated only into the 417 

velocity scale coefficient 𝜖, but not in unresolved shear coefficient 𝜂. The results (Figures 4c and 418 

4h) demonstrate only a slight impact on the simulated temperature profiles. The deviation in 419 

temperature from the baseline KPP_LMD remained relatively minor, less than 1°C throughout 420 

the year. The mixed layer was only slightly deeper after September.  421 

In the KPP schemes that include wave effects in both velocity scale coefficient 𝜖 and 422 

unresolved shear coefficient 𝜂, i.e., KPPLT_LF17, KPPLT_RW16, KPP_DNN2a and 423 

KPP_DNN2b, as shown in Figures 4d, 4e, 4i and 4j, the simulated mixed layer using those 424 

schemes was evidently cooler and deeper throughout the year than that using KPP_LMD. A 425 

warm anomaly was observed at a depth of approximately 120 m throughout the year. That is the 426 

greatest depth that the mixed layer reached in March and well below the mixed layer after April 427 

when the water column re-stratified, thus highlighting the significance of OSBL mixing in 428 

shaping upper-ocean thermal profiles and heat transfer between the surface and the interior 429 

ocean. Among these solutions, the one using KPPLT_RW16 displays the most rapid mixed layer 430 

cooling and deepening in Fall, implying the strongest mixing during that period, consistent with 431 

the finding by Q. Li et al. (2019). The stronger mixing by KPPLT_RW16 is attributed to the use 432 

of hurricane conditions to tune the coefficients. The simulated short-term mixed layer cooling 433 



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 

 

and deepening due to storms, and the subsequent short-term warming and restratification by 434 

these four parameterizations were also more dramatic than those by KPP_LMD, KPPLT_VR12 435 

and KPP_DNN1. These results highlight the importance of accounting for the unresolved shear 436 

coefficient 𝜂 in modeling wave effects in parameterizations under the KPP framework. 437 

For SMC_KC94 (Figure 4f), which did not incorporate wave effects, the simulated mixed 438 

layer tends to be shallower and warmer throughout the year compared to that in KPP_LMD, 439 

indicating that the parameterized mixing in SMC_KC94 is weaker than that in KPP_LMD. This 440 

is particularly evident during the first half of the year when the mixed layer warms and re-441 

stratifies. With the inclusion of wave effects, the simulation using SMC_H15 yields a mixed 442 

layer that is cooler and deeper compared to the one using SMC_KC94. Between January and 443 

March, the simulated mixed layer using SMC_H15 exhibits higher temperatures than those 444 

generated by the KPPLT and KPP_DNN2 schemes. The re-stratification predicted by SMC_H15 445 

occurs more rapidly than that by KPP_LMD, evidenced by a sharper increase in mixed layer 446 

temperature during April. The simulated mixed layer cooling and deepening rates by SMC_H15 447 

in fall is close to those using KPPLT_LF17, KPP_DNN2a and KPP_DNN2b. 448 

The time series of sea surface temperature (SST) for the years 2011 to 2016 are presented 449 

in Figure 5. The simulated SST is mostly warmer than observation at the end of the year for all 450 

years. At the OSP, large- and meso- scale processes also contribute to the annual cycle of SST 451 

(Cronin et al., 2015). Across the six years simulated, SST was the highest using the SMC_KC94 452 

and the lowest using KPPLT_RW16, respectively, implying that mixing is the weakest in 453 

SMC_KC94 and is the strongest in KPPLT_RW16. When using KPPLT_VR12 and 454 

KPP_DNN1, the simulated SST is close to that in KPP_LMD throughout the 6 years, reaffirming 455 
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that KPP parameterizations without counting on wave effects on unresolved shear coefficient 𝜂 456 

has only limited impact on the evolution of MLD and temperature within the mixed layer.  457 

 458 

Figure 5. Comparison of observed SST time series at OSP and simulated SST time series using 459 

different schemes from 2011 to 2016 (panels (a) to (f)) in simulation Set 1. All simulations were 460 

driven by identical surface forcing conditions, i.e., using pre-calculated surface buoyancy fluxes. 461 
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The simulated SSTs using KPPLT_LF17, SMCLT_H15, KPP_DNN2a, and 462 

KPP_DNN2b were lower than that using KPP_LMD, KPPLT_VR12, KPP_DNN1, and 463 

SMC_KC94, but higher than that using KPPLT_RW16. There is a considerable difference 464 

between the solutions of the two KPP_DNN2 schemes: KPP_DNN2a and KPP_DNN2b. The 465 

simulated SSTs by the two schemes were close to each other for the year 2013. In other 466 

simulated years, the simulated SSTs when using KPP_DNN2b were noticeably cooler than that 467 

using KPP_DNN2a. The difference between KPP_DNN2a and KPP_DNN2b highlights the 468 

different roles that waves played in different years. 469 

The simulated SSTs using KPPLT_LF17, SMCLT_H15, KPP_DNN2a, and 470 

KPP_DNN2b were more closely aligned with both the magnitude and the tendency of the 471 

observed SSTs in OSP than using KPP_LMD, KPPLT_VR12, KPPLT_RW16 and SMC_KC94. 472 

However, it is important to note that the one-dimensional column models like the GOTM do not 473 

account for processes at a scale larger than boundary layer turbulence, such as submesoscale, 474 

mesoscale, and large-scale circulations. Therefore, differences between GOTM solutions and 475 

observations should be interpreted with caution as they could be due to contributions by those 476 

larger-scale processes. As pointed out by Large et al. (1994), OSP is often impacted by heat 477 

advection between September and February, a factor that can significantly modulate SSTs but is 478 

not included in the 1D GOTM simulation, thus often causing larger discrepancies between 479 

simulated and observed SSTs during these months. For example, observed cooling is stronger 480 

than the simulated cooling by all schemes during November 2016 and warmer than the simulated 481 

cooling by all schemes with wave effects during December 2013.  482 

 The simulated SSTs, derived using online flux calculation (set 2), are presented in Figure 483 

6. With online flux calculation, the buoyancy fluxes vary across different simulations. A lower 484 
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simulated SST results in smaller surface heat loss, as both the outgoing long wave and the 485 

sensible heat loss calculated from the COARE algorithm are both smaller. Different from the 486 

solutions using pre-calculated fluxes (set 1) shown in Figure 5, the differences in SST among 487 

simulations employing different turbulent mixing schemes in Figure 6 were much smaller, 488 

mostly less than 0.5°C. The simulated SSTs using different parameterization schemes were also 489 

more closely aligned with observations. However, starting from November, consistent biases 490 

from the observed SSTs were found in each simulated year, with SSTs generally being higher 491 

except for the year 2013. The deviated SSTs in winter are due to the advection effects which are 492 

not considered in the 1D GOTM model, while the unique SST biases in winter 2013, is likely 493 

due to the heatwave “Blob”. These biases underscore the influence of advection on SSTs, an 494 

impact that could not be completely mitigated by online flux calculation using bulk formulas. 495 
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 496 

Figure. 6. Same as Figure 5, but for Simulation Set 2 using buoyancy flux calculated online. 497 

 498 

  Figure 7 shows the differences in the simulated MLDs between simulations driven by 499 

pre-calculated buoyancy fluxes (set 1) and those driven by fluxes calculated online using bulk 500 

formulas (set 2). During the summer months, , the simulated MLDs in set 1, using pre-calculated 501 

flux, were mostly slightly shallower with KPP_LMD, and slightly thicker with KPPLT_RW16 in 502 
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comparison with the observed MLDs. Simulated MLDs in set 2, which used online flux 503 

calculation, were shallower and better aligned to observations. During this period, online flux 504 

calculation reduces biases in both simulated SSTs and MLDs. However, during the colder 505 

months from January to April and after November, when the simulated SST is higher than the 506 

observed SST (Fig. 6), the simulated MLDs were deeper when driven by fluxes calculated online 507 

using bulk formula. Note that during these periods, the MLDs in simulations using 508 

parameterization schemes with wave enhancements (KPPLT_LF17, KPPLT_RW16 and 509 

KPP_DNN2b) were deeper than the observed mixed layer. Results of simulations over a 6-year 510 

period from 2011 to 2016 (see Figure S1 in supporting information) confirms that all the 511 

simulations using online flux calculation efficiently eliminates the warming drift of SSTs, but the 512 

deviations of MLDs in colder months amplified over years, even for KPP_LMD. While the 513 

online flux calculation has the potential to reduce biases in the simulated SST, it could 514 

conversely increase biases in the simulated MLDs.  515 
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 516 

Figure 7. Comparison of simulated MLDs between GOTM simulations using PMEL derived flux 517 

products and those using COARE-v3.6 online calculated fluxes. The MLDs were diagnosed by 518 

the depth where water density exceeds surface water density by 0.03𝑘𝑔/𝑚3. For clarity in 519 

demonstrating long-term trends and reducing the impact of short-term fluctuations, MLDs were 520 

smoothed using a 5-day running average. 521 
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5.2 Comparison of the velocity scale coefficient and the unresolved shear coefficient 522 

Figure 8 presents the dependence of the velocity scale coefficient (ϵ in Equation 5) on 523 

turbulent Langmuir number and MLD and compares it across KPPLT_LF17, KPPLT_RW16, 524 

and KPP_DNN2b. 525 

In all three schemes, the magnitude of ϵ shows a clear dependence on the non-526 

dimensional turbulent Langmuir number (𝐿𝑎𝑡). Specifically, a smaller 𝐿𝑎𝑡 is associated with a 527 

larger 𝜖, indicating wave-induced turbulence has a larger effect on mixing. 𝜖 by KPPLT_RW16 528 

(Figures 8c and 8d) is the largest among the three schemes. ϵ by KPP_DNN2b displays a 529 

dependence on the MLD as well. The deeper the MLD, the larger the 𝜖. 530 

 531 

 532 

Figure 8. Comparison of the velocity scales coefficient (ϵ) as computed by two of the 533 

deterministic KPPLT schemes, i.e., KPPLT_LF17 (panels a and b) and KPPLT_RW16 (panels c 534 

and d), and as predicted by the KPP_DNN2b (panels e and f).  The color scale in each hexagon 535 
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represents the average enhancement of velocity scale 𝜖 over all data points contained in the 536 

hexagon region. Only hexagons averaged over more than 50 data points are shown. The upper 537 

row (panels a, b, c) corresponds to conditions of destabilizing buoyancy forces, whereas the 538 

lower row (panels d, e, f) represents conditions under stabilizing buoyancy forces. Different from 539 

the regime diagrams in Figure 2, the y-axis is the mixed layer depth (MLD).  540 

 541 

Figure 9 shows the unresolved shear coefficient (η in Equation 6) for KPPLT_LF17, 542 

KPPLT_RW16, and KPP_DNN2b. As demonstrated in the simulated temperature profiles and 543 

SST (Figures 4 and 5), the magnitude of the unresolved shear coefficient 𝜂 is more important 544 

than the magnitude of the velocity scale 𝜖 coefficient in the simulation of upper-ocean 545 

temperature and stratification. 546 

For KPPLT_LF17 (Figures 9a and 9b), 𝜂 only varies with forcing conditions when 547 

surface buoyancy forcing is destabilizing. Under stabilizing buoyancy forcing conditions, the 548 

velocity scale of unresolved shear 𝑈𝑡
2 by KPPLT_LF17 is the same as that by KPP_LMD, thus 549 

𝜂 = 1.0 regardless of the wind-wave-buoyancy condition or MLD. Under destabilizing 550 

buoyancy forcing conditions, the average value of 𝜂 ranges from 1.0 to 2.5, but there is no 551 

apparent correlation between 𝜂 and either 𝐿𝑎𝑡 or MLD. For KPPLT_RW16 (Figures 9c and 9d), 552 

there is an apparent relationship between 𝜂 and 𝐿𝑎𝑡, and no apparent tendency differences under 553 

different buoyancy forcing conditions or MLD. The more dominant the wave effect over the 554 

wind effect, the smaller the 𝐿𝑎𝑡 and the larger the 𝜂.  555 

In KPP_DNN2b (Figures 9e and 9f), 𝜂 is not only impacted by 𝐿𝑎𝑡, but also by MLD and 556 

surface buoyancy forcing. Similar to KPPLT_LF17 and KPPLT_RW16, 𝜂 increases with 557 

decreasing turbulence Langmuir number for all MLDs. Different from the two KPPLT schemes, 558 
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there is an evident relationship between 𝜂 and MLD: 𝜂 decreases with increasing MLD. 559 

Langmuir circulation arises from wave-current interaction close to the surface, where it exhibits 560 

the greatest intensity (e.g., McWilliams et al., 1997). Weller and Price (1988) found no 561 

significant wave effect at the base of the mixed layer if the MLD exceeds −40𝑚 deep. 562 

Furthermore, 𝜂 also depends on whether the surface buoyancy forcing is stabilizing or 563 

destabilizing. For the same 𝐿𝑎𝑡 and MLD, 𝜂 is larger when surface buoyancy forcing is 564 

stabilizing. 565 

 566 

 567 

Figure 9. Same as Figure 8, but for the unresolved shear coefficient (𝜂) 568 

 569 
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5.3 The Efficiency of KPP_DNNs 570 

A parameterization must be efficient so that it can be used in realistic ocean models for 571 

long-term integrations. The efficiency of the KPP_DNNs is evaluated by comparing them with 572 

the traditional KPP and KPPLT schemes (refer to Table 1) within the GOTM framework.  573 

simulations were conducted on a dedicated single core of Intel Cascade Lake (Intel® 574 

Xeon® Platinum 8260 Processor) CPUs on the Louisiana Optical Network Initiative's high-575 

performance computing server (LONI-HPC). The year 2013 served as the benchmark period for 576 

the GOTM model runs to evaluate efficiency. In all simulations, the forcing and configuration 577 

were identical. To ensure accuracy in measuring computational efficiency, we disabled output. 578 

The results showed that the run times for KPP_DNNs are comparable with those of 579 

traditional KPP and KPPLT schemes. Specifically, the run time for KPP_DNNs exceeds less 580 

than 4% that of KPP_LMD and KPPLT_VR12 and is slightly shorter than that for KPPLT_LF17 581 

and KPPLT_RW16. This comparison suggests that KPP_DNN schemes are suitable for 582 

implementation in realistic ocean and climate models.  583 

 584 

Table 2. List of parameterization names and their run time. 585 

Simulation Name Run Time (seconds) 

KPP_LMD 3.06 

KPPLT_VR12 3.07 

KPPLT_LF17 3.48 

KPPLT_RW16 4.12 

KPP_DNN1 3.09 

KPP_DNN2a 3.16 

KPP_DNN2b 3.20 

 586 
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6 Conclusions 587 

In this study, feedforward deep neural networks (DNNs) tuned using 11-year solutions of 588 

turbulence-resolving large eddy simulations (LES) driven by realistic forcing conditions at ocean 589 

station Papa (OSP), are used to improve one of the most popular parameterizations for mixing in 590 

the ocean surface boundary layer (OSBL), the K-Profile Parameterization (KPP). Specifically, 591 

the DNNs are used to parameterize two coefficients, the velocity scale coefficient 𝜖 and the 592 

unresolved shear coefficient 𝜂 in equations 5 and 6, that revise two uncertain but important 593 

parameters in the KPP. The fine-tuned KPP_DNNs are implemented into the general ocean 594 

turbulence model (GOTM), a one-dimensional column model serving as a testbed of turbulence 595 

parameterization. The KPP_DNNs are compared with seven popular traditional deterministic 596 

schemes, including the first-order KPP and the second-moment closure (SMC) schemes within 597 

the GOTM using simulations for upper-ocean conditions at OSP between 2011 and 2016. Key 598 

conclusions from this study are summarized as follows:  599 

• The KPP_DNNs are stable for integration over several years. They are also efficient and 600 

have comparable run time to traditional deterministic KPP schemes. 601 

• When using the pre-derived flux productions, the simulated mixed layer is the warmest 602 

and the shallowest using the schemes without wave effects, i.e., KPP_LMD, and SMC, 603 

i.e., SMC_KC94. The simulated re-stratification in spring is faster in SMC than in KPP. 604 

• With the addition of wave effects, i.e., using KPPLTs, SMCLT, KPP_DNN2a and 605 

KPP_DNN2b, the simulated mixed layer tends to be cooler and deeper. The simulated 606 

mixed layer is the coolest and the deepest using KPPLT_RW16.  607 

• Biases in the simulated SST are smaller when using a bulk flux to calculate buoyancy 608 

flux online (Simulation set 2) than when using pre-calculated flux (Simulation set 1). 609 
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However, biases in the simulated MLDs are larger when using the on-line buoyancy flux 610 

calculation. 611 

• In the KPP framework, the unresolved shear coefficient 𝜂 shall be considered 612 

simultaneously with the velocity scale coefficient 𝜖. Impacts on the simulated sea surface 613 

temperature (SST) and mixed layer depth (MLD) are limited if only 𝜖 is considered. 614 

• In all KPPLT_LF17, KPPLT_RW16 and KPP_DNN2b, the magnitude of 𝜖 is impacted 615 

by the relative strength of wave effect. The more dominant the wave effect, the smaller 616 

the turbulent Langmuir number (𝐿𝑎𝑡), the larger the 𝜖. 617 

• In KPP_DNN2, the value of 𝜂 also changes with the thickness of mixed layer and 618 

whether the surface buoyancy forcing is stabilizing or destabilizing. 𝜂 is much larger if 619 

the mixed layer is shallow but decreases fast with the increasing of MLD. When MLD 620 

and 𝐿𝑎𝑡 are identical, 𝜂 is smaller when surface buoyancy forcing is destabilizing than 621 

stabilizing. 622 

The KPP_DNN schemes not only reproduce the dependence of turbulent mixing on 623 

Langmuir number, but also uncover the correlation with the MLD and whether the surface 624 

buoyancy forcing is stabilizing or destabilizing. This study highlights the potential of leveraging 625 

deep learning to identify and incorporate complex, multifaceted influences on turbulent mixing 626 

in the OSBL, 627 

The next step involves implementing and evaluating the KPP_DNNs in a realistic ocean 628 

model for a regional ocean. Although KPP_DNN2a does not include waves as an input, it 629 

implicitly includes wave-induced mixing as it is trained using LES solutions with wave effects. 630 

Given its reasonable results and its simplicity without the need to couple the ocean model with a 631 

wave model, it would be the first choice. We are currently conducting LES simulations for the 632 
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Gulf of Mexico and will train the KPP_DNNs using those simulations. The KPP_DNN2a will be 633 

implemented in the HYCOM model configured for the Gulf of Mexico (Dukhovskoy et al., 634 

2015; Laxenaire et al., 2023). 635 
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(https://www.pmel.noaa.gov/ocs/data/disdel/). The GOTM codes with KPP_DNN model and 646 

COARE bulk flux algorithm implemented are available at 647 

https://github.com/lsuocean/KPP_DNN_in_GOTM.  648 
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