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Abstract. Deep learning models have demonstrated remarkable success in fields such as language processing and computer

vision, routinely employed for tasks like language translation, image classification, and anomaly detection. Recent advance-

ments in ocean sciences, particularly in data assimilation (DA), suggest that machine learning can emulate dynamical models,

replace traditional DA steps to expedite processes, or serve as hybrid surrogate models to enhance forecasts. However, these

studies often rely on ocean models of intermediate complexity, which involve significant simplifications that present chal-5

lenges when transitioning to full-scale operational ocean models. This work explores the application of Convolutional Neural

Networks (CNNs) in data assimilation within the context of the Hybrid Coordinate Ocean Model (HYCOM) in the Gulf of

Mexico. The CNNs are trained to correct model errors from a two-year, high-resolution (1/25°) HYCOM dataset, assimilated

using the Tendral Statistical Interpolation System (T-SIS). The CNNs are trained to replicate the increments generated by the

TSIS data assimilation package, aiming to correct model forecasts of sea surface temperature (SST) and sea surface height10

(SSH). The inputs to the CNNs include real satellite observations of SST from the Group for High Resolution Sea Surface

Temperature (GHRSST), along-track altimeter SSH observations (ADT), the model background state (previous forecast), and

the innovations (differences between observations and background). We assess the performance of the CNNs across five con-

trolled experiments, designed to provide insights into their application in environments governed by full primitive equations,

real observations, and complex topographies. The experiments focus on evaluating: 1) the architecture and complexity of the15

CNNs, 2) the type and quantity of observations, 3) the type and number of assimilated fields, 4) the impact of training window

size, and 5) the influence of coastal boundaries. Our findings reveal significant correlations between the chosen training win-

dow size—a factor not commonly examined—and the CNNs’ ability to assimilate observations effectively. We also establish a

clear link between the CNNs’ architecture and complexity and their overall performance.

1 Introduction20

Assimilating diverse observations into operational ocean models presents significant challenges, primarily due to the compu-

tational demands and complexities associated with traditional methods like Four-Dimensional Variational Data Assimilation

(4DVar) or variations of the ensemble kalman filter (EnKF). These methods, while robust, require substantial computational

resources and time, 4DVar in the integration of the adjoint model and EnKF in the integration of the physican model itself.
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The data assimilation process can be particularly time consuming when dealing with heterogeneous and high-volume datasets,25

which are becoming more common in oceanographic research. Machine learning methods, on the other hand, offer a promising

alternative that could potentially accelerate this assimilation process.

Recent works in ocean sciences explore the feasibility and effectiveness of using techniques such as neural networks (NNs)

to improve ocean models. For example, it has been explored how the entire variational data assimilation system could be sub-

stituted with machine learning-based approaches (Geer, 2021; Boukabara et al., 2019; Dong et al., 2022). While this approach30

is still maturing, there is considerable interest in using machine learning to enhance existing data assimilation systems.

Additionally, machine learning methods have been applied to specific components of data assimilation systems in ocean

models. For instance, it has been discussed how neural networks can be used for fast emulation of forward models, which are

crucial for direct assimilation of satellite measurements in ocean models Krasnopolsky (2013). Furthermore, ML observation

operators have been developed to improve the assimilation of surface observations such as sea surface temperature and ocean35

surface elevation (Guinehut et al., 2004).

This work investigates the use of CNNs to assimilate sea surface height and sea surface temperature observations with the

HYbrid Coordinate Ocean Model (HYCOM). The CNNs are trained to correct the model error from a 1/25 resolution two-

year-long data assimilated HYCOM run with the Tendral Statistical Interpolation System (T-SIS) as the assimilation package.

The performance of the CNNs is studied through five controlled experiments that provide intuition on how to apply them in40

settings with full primitive equations, real observations, and complex topographies.

The experiments evaluate the architecture and complexity of the CNN, the type and number of observations, the type and

number of assimilated fields, the response to the training window size, and the effects of the coastline. Our results show strong

correlations between the window size selected to train the CNN, which is not commonly evaluated, and the ability of the CNN

to assimilate the observations. Similarly, we found a clear relationship between the complexity of the chosen CNN and its45

overall performance.

Sections 2 and 2.1 provide a small overview of the HYCOM model and the T-SIS assimilation system. Section 2.2 provides

an introduction to CNNs and the U-net architecture. Section 3 describes the controlled experiments using CNNs, section 4

describes the results, the generalization tests performed, and the performance comparison with T-SIS. We end with conclusions

and final remarks in Section 5.50

2 The Hybrid Coordinate System Ocean Model (HYCOM)

The HYbrid Coordinate Ocean Model (HYCOM) is a state-of-the-art multi-layer ocean model (Bleck, 2002; Chassignet et al.,

2003, 2007, 2009; Chin et al., 1999). A key feature of HYCOM is the use of a hybrid vertical coordinate. While the horizon-

tal coordinates are typically Cartesian, the vertical coordinate need not be restricted to represent the vertical distance from a

specified origin, the so-called "z-coordinate". In various parts of an ocean basin, the layer flow may be driven more strongly55

by different processes, which in turn gives preference to the use of a more suitable vertical coordinate. In the open stratified

ocean, for example, the ocean flow typically follows along layers of constant potential density (isopycnals). For shallow coastal
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regions, terrain-following coordinates may be more suitable to characterize the flow subject to the kinematic constraints pro-

vided by the bathymetry. In the surface mixed layer or where the ocean is un-stratified, fixed pressure level coordinates may

better represent the flow. The detailed choices for vertical coordinates for HYCOM is discussed in Chassignet et al. (2003).60

The primitive equations of the HYCOM are detailed in Bleck (2002):
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where v is the horizontal velocity vector, s is the vertical coordinate, ζ is the relative vorticity, f is the Coriolis parameter, k

is the vertical unit vector, p is pressure, M = gz+ pα is the Montgomery potential, α is the potential specific volume, τ is the

horizontal wind stress at the surface or drag at the ocean bottom, θ are one of two thermodynamic variables, either temperature70

or salinity, and ν is the eddy viscosity coefficient. The first equation (1) is the momentum equation for the components of v,

yielding two scalar equations. The second equation (2) is the mass continuity equation. The third equation (3) represents two

scalar thermodynamic equations, one for each thermodynamic variable. Thus, there are a total of five equations that are being

solved. A unique feature of HYCOM is that the vertical coordinate system can be modified at any given time step during model

integration as flow conditions change. This is done through the use of a grid generator.75

In addition to the equations above, HYCOM includes parameterizations that take into account other physical processes, such

as vertical mixing (possibly due to turbulence), convection and sea ice. The HYCOM model is a highly configurable model

that can be run at a wide range of horizontal resolutions, vertical levels and can be driven using readily available lateral and

boundary conditions (e.g., surface wind-forcing, tidal forcing and bathymetry).

2.1 HYCOM Data Assimilation System80

The HYCOM modeling system in this study utilizes the T-SIS data assimilation system (Srinivasan et al., 2022). In the earliest

version of this system, T-SIS followed the classical Kalman filter approach for optimal interpolation. In this approach, it is

assumed that the model forecast follows a Markov process, which means that the future state of the system depends only on its

current state and not on any previous states (Davis, 2013). Observations can improve the estimate of the model state in a least

squares sense, taking into account the modeled and observed error covariances as follows:85
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where x is the model state, f refers to the forecast operator (“the ocean model”), while the a superscript refers to the analysis

after observations are assimilated. The matrix K is commonly known as the Kalman Gain matrix, it determines the relative90

weight given to the observations versus the forecast by taking into account model and observation error covariances. H is

an observation operator that maps the modeled state variables to the observation variables. In the simplest scenario where the

observations represent the same fields and have the same spatial and temporal resolution as the model, H is just the identity

operator. In most cases, observations will sample only part of the model state, hence H will then interpolate the corresponding

field(s) of the model state and perform any other transformation that may be needed. The Kalman gain is computed as95
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where P f is the forecast model state error covariance matrix, and R is the observation error covariance matrix. When the

observation errors are high (R is large), K gives low weight in the second term in Eq. 5, giving the forecast of the model more

weight. In version 2.0 of T-SIS Srinivasan et al. (2022), an alternative approach to calculate the Kalman gain is used

Kt =
(
P−1

t +HT
t R

−1
t Ht

)−1
HT

t R
−1
t (7)100

The Kalman gain is computed by first defining the information matrix as L≡ P−1 and then the information matrix is

modeled by a Gaussian Markov Random Field (GMRF), which is a probabilistic model consisting of a set of random variables

having a multivariate Gaussian distribution, with the Markov property that each variable is conditionally independent of all

others given its immediate neighbors (Rue and Held, 2005). This property leads to a sparse precision (information) matrix L,

making computations more efficient. Each element is conditionally specified based on a set of neighbors. Via spatial regression105

(Chin et al., 1999), the neighbors can be determined in a manner that can lead to a sparse matrix for L. This approximation

of the inverse error covariance matrix results in a significant reduction in computational expense when used implicitly to solve

Eq. (7). Speed-ups of an order of magnitude have been reported in Srinivasan et al. (2022).

Finally, after each assimilation step, there are further adjustments to the data in order to accommodate certain HYCOM

constraints, such as model layer thickness adjustments, min/max thresholds, hydrostatic checks, and geostrophic balance. The110

data used in the assimilation have wide temporal and spatial availability.

2.2 Convolutional Neural Networks

Fully-connected neural networks, or dense networks, have approximately m∗n+n number of parameters for every layer whith

m previous nodes and n current nodes. The number of parameters grows rapidily by incorporating additional intermediate
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layers, which are commonly needed to create complex models capable of approximating non-linear sytems. This makes dense115

networks impractical for training large-scale problems encountered in domains like computer vision, where each pixel in an

image represent an input feature into the model. However, this limitation is overcomed by the introduction of Convolutional

Neural Networks (CNNs).

CNNs are able to reduce the number of parameters in a neural network by sharing weights across different locations in the

input data (LeCun et al., 1998). In CNNs, each neuron in a layer is connected only to a small region of the layer before it. This120

region is called the receptive field. This is from an inductive bias coming from the assumption that only nearby pixels in the

images are likely to be related to each other, thus capturing local features in the input data like edges, textures, etc. CNNs are

designed to process data with a grid-like topology (e.g. images).

Convolutional Neural Networks (CNNs) employ convolutions, a specialized type of linear operation, instead of general

matrix multiplication in their layers (O’Shea and Nash, 2015). A convolution involves computing the output (feature map) by125

applying a filter (kernel) across the input, capturing local dependencies among input features. This operation is defined for

sequences a and k as:

b= (bi) , bi :=

m∑
j=−n

ajki−j (8)

where a is the input, k the kernel, and b the resulting feature map, demonstrating local connectivity. CNN architectures

typically combine convolutional layers with pooling layers, which reduce the spatial dimensionality of feature maps, thereby130

decreasing the number of operations and enhancing computational efficiency (O’Shea and Nash, 2015).

U-nets, originally developed by Ronneberger et al. (2015) for biomedical image segmentation, are a type of Convolutional

Neural Network (CNN) characterized by a symmetric encoder-decoder architecture forming a U-shape (Ronneberger et al.,

2015). The encoder path, or contracting path, consists of repeated applications of convolutional layers followed by pooling

layers, which progressively downsample the input. At each downsampling step, the number of channels is typically doubled,135

enabling the network to capture increasingly abstract features from the input data. The decoder path, upsamples the feature

maps using transposed convolutions or other upsampling techniques. This path reduces the number of channels by half at each

step and at the end reconstructs the spatial dimensions of the original input. A main feature of U-nets is the inclusion of skip

connections between corresponding layers in the encoder and decoder paths. These connections concatenate feature maps from

the encoder directly to the decoder, allowing the network to retain high-resolution features that might otherwise be lost during140

downsampling. This design effectively preserves spatial information and enables precise localization, which is essential for

tasks like segmentation.

Figure 1 illustrates a comparison between the classical Convolutional Neural Network (CNN) architecture (top panel) and the

U-Net architecture (bottom panel). As previously described, U-Nets incorporate three additional components that distinguish

them from traditional CNNs:145

– Pooling Layers: Represented by red blocks in the figure, these layers progressively reduce the spatial dimensions of the

feature maps.
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– Upsampling Convolutions: Shown as green blocks, these layers increase the spatial resolution of the feature maps.

– Skip Connections: Depicted by blue arrows, these connections concatenate feature maps from corresponding layers in

the encoder and decoder paths.150

In this example, both architectures receive an input image of size 256× 256. The classical CNN employs convolutional

layers with a uniform configuration of 64 filters each. In contrast, the U-Net architecture uses a varying number of filters across

its layers. Both architectures consist of ten convolutional layers, trying to maintain a comparable number of parameters and

similar computational operations.

Figure 1. Comparison of the classical CNN architecture (top) vs the U-Net architecture (bottom).

Over the past decade, U-Net architectures have been extensively applied to a variety of geoscience problems due to their155

capability to learn hierarchical features and capture both local and global contexts. Variants of U-Net, such as the attention

U-Net (Oktay et al., 2018) and the Small Attention-UNet (SmaAt-UNet) (Roy et al., 2018), have been developed to enhance

feature extraction and improve performance in complex geoscientific tasks. These variants introduce mechanisms like attention
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gates and efficient channel interdependencies, allowing models to focus on relevant features while reducing computational

requirements. Some notable applications of the use of U-Nets in geoscience include:160

– Remote Sensing and Earth Observation: U-Nets have been extensively used for semantic segmentation and classification

of satellite imagery, including land cover mapping (Russwurm and Korner, 2018), building and road extraction (Maggiori

et al., 2017; Demir et al., 2018), and change detection (Daudt et al., 2018);

– Meteorology and Climate Science: U-Net architectures have been employed for precipitation nowcasting using radar

data (Agrawal et al., 2019);165

– Hydrology and Flood Mapping: U-Nets have been applied to flood detection and mapping from satellite images (Pech-

May et al., 2024), and mountain ice segmentation (Tian et al., 2022);

– Oceanography: U-Net architectures have been utilized in oceanography for bathymetry estimation from optical imagery

(Nicolas et al., 2023), and ocean eddy detection and classification (Lguensat et al., 2018);

– Data Assimilation and Ocean Modeling: Beauchamp et al. (2022) introduced Multimodal 4DVarNets, where U-Net-170

based architectures obtain similar results to 4DVarNets for the reconstruction of sea surface dynamics by leveraging

synergies between sea surface temperature (SST) and sea surface height (SSH) observations. Their work demonstrates

the capability of deep learning models to assimilate multiple data modalities and reconstruct ocean surface variables with

high accuracy.

The versatility of U-Net architectures in geoscientific applications makes them a suitable choice for data assimilation in175

ocean modeling, given their ability to capture spatial dependencies and manage multiscale features. This capability aligns well

with the demands of integrating observational data into ocean models, motivating our choice to adopt this architecture.

3 Data assimilation with Convolutional Neural Networks

In this section, we explore the use of Convolutional Neural Networks (CNNs) as a data assimilation technique for ocean

models. We assess the performance of multiple CNN models across five experimental setups. These models assimilate data180

from sea surface temperature (SST) and sea surface height (SSH) observations. Their performance is compared with results

obtained through the optimal interpolation method implemented in the T-SIS. The experiments are conducted in the Gulf of

Mexico, covering a domain from 18.09◦ to 31.96◦ latitude and −98.0◦ to −77.04◦ longitude, as depicted in Figure 2.

3.1 Data

The ocean model used is the HYbrid Coordinate Ocean Model (HYCOM) with a spatial resolution of 1/25◦. The GOMb0.04185

domain is set up with the high resolution 1km bathymetry of the Gulf of Mexico (Panagiotis, 2014) over a domain going

from 98◦E to 77◦E in longitude and from 18◦N to 32◦N in latitude. With 41-hybrid layers in the vertical, the latest version of
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Figure 2. This map illustrates the geographic limits within the Gulf of Mexico used for our experiments.

the HYCOM model (2.3.01: https://github.com/HYCOM/HYCOM-src) is forced at the surface with the CFSR/CFSv2 hourly

atmospheric forcing. The lateral open boundaries are relaxed to daily means of the global HYCOM GOFS3.1 reanalysis

(https://www.hycom.org/dataserver/gofs-3pt1/reanalysis). The initial conditions are taken from a 20-year reanalysis created190

with the same configuration.

The T-SIS package, detailed in section 2.1, is utilized with HYCOM for producing the increments, which are used to cor-

rect the model state and generate the analysis. To optimize the system’s performance for the HYCOM Lagrangian vertical

coordinate system, subsurface profile observations are first layerized (re-mapped onto the model’s hybrid isopycnic-sigma-z

vertical coordinate system) prior to assimilation. The analysis procedure then updates each layer separately in a vertically de-195

coupled manner. A layerized version of the Cooper and Haines (1996) procedure is used to adjust model layer thicknesses in

the isopycnic-coordinate interior in response to SSH anomaly innovations (differences between observed values and the back-

ground state). In the data assimilation field, innovations refer to the differences between the observed values and the model’s

background (prior) estimates of those values, expressed in the observation’s frame of reference. Before calculating SSH inno-

vations the mean dynamic topography (MDT) is added to the altimetry observations. A MDT derived from a 20-year freerun200

of the GOMb0.04 configuration is used for converting SLA to SSH. The multiscale sequential assimilation scheme based on

a simplified ensemble Kalman Filter (Evensen, 2003; Oke et al., 2002) is used to combine the observations and the model to

produce best estimates of the ocean state at analysis time.

To train the CNN models, we use real satellite observations of sea surface temperature (SST) from the Group for High Res-

olution Sea Surface Temperature (GHRSST) dataset and along-track altimeter sea surface height (SSH) observations (ADT).205
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The model background state, representing the previous forecast from HYCOM, is also used as input. Additionally, the incre-

ments are also used as input, which are the differences between the observations and the model background state. The CNNs are

trained to replicate the increments generated by the T-SIS data assimilation package. In summary, the CNNs learn to map the

background state, observations, and innovations to the increments, effectively emulating the data assimilation step performed

by T-SIS.210

It’s important to note that while the SST observations from GHRSST provide near-complete spatial coverage, the SSH

observations from along-track altimeter data are sparse and irregularly distributed. The DA schemes are able to handle such

sparse datasets and propagate the observational information across the model domain. This is achieved through statistical

interpolation and the physical dynamics represented in the model by the T-SIS system, which together allow us to estimate the

ocean state in unobserved areas based on the available observations.215

This assimilative ocean model configuration is initially run for two years (2009 and 2010), generating a total of 730 daily

outputs. These outputs are used to train and validate the proposed CNN models. Each day’s increment fields of SSH and SST,

Kt(yt −Htx
f
t ), the background state xf

t , and the observations yt are employed to train the CNN models.

In Earth sciences, particularly in ocean modeling, data leakage is a significant concern due to the strong temporal autocorre-

lation in the data. The state of the ocean does not change dramatically over short periods, which means that random splitting of220

data can lead to leakage where the model learns from future information. To mitigate this, we employed a chronological data

splitting strategy. From the 730 daily examples the first 80% is used for training, 10% for validation, and the last 10% is used

for testing, ranging from October 19th to December 31st of 2010. This method ensures that the model is trained on past data

and evaluated on future data, reducing the risk of information from the test set influencing the training process. However, we

recognize that the proximity of the training and test sets may still allow for some data leakage due to the ocean’s slow-changing225

nature.

To further assess the model’s ability to generalize and to address potential data leakage, we tested the model on datasets from

the years 2002 and 2006. These years were selected because they exhibit different dynamical states of the GoM, with the Loop

Current mostly in retracted and extended phases, respectively. By evaluating the model on data that is entirely separate from

the training and validation sets and representing different oceanographic conditions, we reduce the likelihood that the model’s230

performance is artificially inflated due to data leakage.

The model maintained strong performance on these additional datasets, with RMSE values comparable to those on the

original test set as described in the Generalization Tests section.

3.2 Preprocessing

Prior to training the Convolutional Neural Network (CNN) models, we performed several preprocessing steps to ensure that235

the input data was appropriately scaled and formatted. First, to address the issue of differing value ranges among the input

variables, we normalized each field individually. This normalization involved adjusting each input field—such as sea surface

temperature (SST) observations and sea surface height (SSH) observations—to have a mean of zero and a standard deviation

of one. Normalization is an important step in machine learning, as it ensures that all input features contribute equally during
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training, preventing variables with larger magnitudes from disproportionately influencing the model’s learning process. By240

standardizing the inputs, we facilitated a more stable and efficient optimization during model training.

The parameters used for normalization, specifically the mean and standard deviation for each input field, were calculated

using the data from the full training period, encompassing the years 2009 and 2010. These calculated parameters were then

applied to the validation and test datasets, as well as to the additionally tested years 2002 and 2006.

After the CNN models generated the predicted increments, we applied an inverse transformation using the previously cal-245

culated mean and standard deviation to denormalize the outputs. This denormalization step converted the increments back to

their original units—such as degrees Celsius for SST or meters for SSH—making them compatible with the model forecast

corrections. By restoring the original scale of the data, we ensured that the increments could be directly applied to the HYCOM

model outputs.

We addressed the irregular distribution and missing values of the along-track altimeter SSH data by mapping these observa-250

tions onto the model grid and filling the missing data points with zeros. Representing the absence of observations with zeros

allowed the CNN models to process the SSH data as continuous fields, where zeros explicitly indicated locations without

observational data. The response of the CNN to missing values represented as zeros is of interest to us and was part of the

experiments.

The loss function was computed only over ocean grid points. This ensured that the network focused solely on learning the255

ocean dynamics and was not penalized for predictions over land. After the models are trained and used for predictions, we

applied the land mask to set the values at land grid points to NaN. This step ensured that the output fields contained valid data

only over ocean areas, aligning with the physical reality that oceanographic variables are undefined over land.

Additionally, since T-SIS does not provide SSH increments for shallow areas (depths less than 200 meters), we included a

mask indicating areas with depths greater than 200 meters. This depth mask was provided as an additional input channel to260

help the CNN learn this restriction and avoid predicting increments in shallow regions where T-SIS does not apply corrections.

The input tensors to the CNN models are four-dimensional arrays with the following dimensions: [Batch Size, Height,

Width, Channels]. The numbers for Height, Width, and Channels vary depending on the experiment. All input tensors are of

type float32.

3.3 Experiments265

The CNNs’ performance is assessed through five controlled experiments designed to test the expected behavior in practical

operational settings with full primitive equations, real observations, and complex topographies. These experiments investigate

the CNNs’ response relative to the size of the spatial windows used for model training, the complexity of the CNN architecture,

the number and types of ocean fields used as input and output fields, and the allowed ocean percentage in the training examples.

In the experiment analyzing network complexity, we evaluated different network complexities by comparing Simple CNN270

architectures with varying depths (2, 4, 8, and 16 layers) to the U-Net architecture. This experiment aims to assess the impact

of network depth on model performance. All subsequent experiments utilize the U-Net architecture exclusively to explore the

effects of window size, input configurations, ocean percentage, etc.
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It is important to note that our experiments are not twin experiments. In twin experiments, synthetic observations are gen-

erated from a model run (considered the "truth") and are then assimilated back into the model to assess the data assimilation275

system under controlled conditions. In our study, real observational data is used for both training and testing our CNN models.

The T-SIS data assimilation system generates increments based on these real observations, and our CNN models are trained to

replicate these increments. By using actual observations from GHRSST for SST and along-track altimeter data for SSH, our

experiments reflect a more realistic scenario where the CNN models learn from real-world data, capturing the complexities and

uncertainties inherent in operational ocean modeling.280

Figure 3 shows an example of all the possible inputs and outputs tested in the experiments. The first row of the inputs

display the sparse SSH observations and its associated error. The second row displays the model background state and the

difference with respect to the observation. The third row shows additional inputs for the CNN that can improve the prediction

(200m mask and normalized latitude and longitudes). The final row show the SSH and SST increments produced by T-SIS and

learned by the CNN model. Despite the sparsity of the SSH observations, the CNN models produce complete increment fields285

by propagating the information throughout the domain.

3.3.1 Window size

The first experiment examines the CNNs’ performance relative to the size of spatial windows used as input. Training a CNN

within a fixed domain does not guarantee effective generalization to other domains. Despite the translational invariance of

convolutional layers, models may develop biases based on the specific features, such as land-sea boundaries, within the training290

domain, making it challenging to generalize to domains with different coastlines and ocean dynamics. Conversely, using the

entire domain as the training set provides only one training example per day. Training with smaller windows increases the

number of examples, potentially enhancing generalization but possibly at the expense of losing context provided by the larger

domain.

Training a model with the full domain provides just one training example per day. When training with smaller window sizes,295

the total number of training examples is determined by how many sub-windows can fit within our domain. For each dimension,

the total amount of sub-windows that can be selected is given by:

Number of training examples =Ds −Ws +1 (9)

Here, Ds represents the dimension size, and Ws denotes the window size. For instance, if the domain size is 10×10 and the

window size is 5×5, we can fit a total of 6 windows in each dimension, or a total of 36 different examples. In our experiments,300

when training the networks with a window size smaller than the full domain, 10 random windows are selected for a given day,

and each epoch is completed after 1000 of these randomly selected windows are generated. The random images change betwen

batches and epochs. The experiment compares performance across four window sizes: the entire domain (384× 520 pixels),

and smaller windows of 160× 160, 120× 120, and 80× 80 pixels.
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Figure 3. Example of all the possible inputs and outputs tested in the experiments. The first row of the inputs display the sparse SSH

observations and its associated error. The second row displays the model background state and the difference with respect to the observation.

The third row shows additional inputs for the CNN that can improve the prediction (200m mask and normalized latitude and longitudes). The

final row show the SSH and SST increments produced by T-SIS and learned by the CNN model. Despite the sparsity of the SSH observations,

the CNN models produce complete increment fields by propagating the information throughout the domain.
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Figure 4. Examples of randomly selected training windows at various sizes: 385x520 pixels (full domain), 160x160, 120x120, and 80x80

pixels

To assess the impact of spatial coordinates on model performance, we conducted additional experiments by including nor-305

malized latitude and longitude fields as input channels to the network. The latitude and longitude values were scaled between

0 and 1 to align with the normalization of other input features.

3.3.2 CNN complexity

The second experiment evaluates the performance of the CNNs for data assimilation concerning the complexity of the CNN

architecture. Five different models are evaluated using two CNN architectures. The first four models follow a simple CNN310

architecture, which we refer to as SimpleCNN. Models from this architecture are built by stacking convolutional layers with an

increasing number of filters. Each hidden convolutional layer employs a ReLu activation function, and the last two convolu-

tional layers contain a single filter and a linear activation function. The four models using this architecture vary in the number

of hidden convolutional layers with 2, 4, 8, and 16 layers. The second architecture tested follows the encoder-decoder archi-

tecture with skip connections from the U-Net (Ronneberger et al., 2015). For this architecture, one model with three levels and315

18 CNN layers is evaluated. Each convolutional layer in the U-Net architecture is followed by a ReLu activation function and

a Batch Normalization layer, except for the final output layer. The inclusion of Batch Normalization helps stabilize and accel-

erate training and provides regularization benefits by reducing internal covariate shift. Figure 5 presents detailed information

on this model, where all CNN layers except the last one use the ReLu activation function.

Figure 5. Detailed illustration of the U-Net architecture employed in the experiments.
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Table 1 shows the names, number of hidden layers, and number of filters used at each hidden layer for the five model320

architectures tested.

Table 1. Summary of the number of hidden layers and filters tested in each of the proposed CNN architectures.

Name CNN Hidden layers Filter size

SimpleCNN02 2 32, 64

SimpleCNN04 4 32, 64x3

SimpleCNN08 8 32, 64x7

SimpleCNN16 16 32, 64x15

U-Net 14 16x2, 32x2, 64x2, 128x2, 64x2, 32x2, 16x2

3.3.3 Input types

This experiment investigates the use of multiple ocean fields as inputs in our models. Traditional methods, which approximate

the model’s error covariance matrix, face scalability challenges when multiple fields are integrated into the assimilation process,

significantly increasing the matrix size. By varying the input types, including SST, SSH, and their respective observation errors325

we evaluate the potential of a unified deep learning model to assimilate diverse data sources effectively.

3.3.4 Outputs

This experiment evaluates the network’s performance concerning the type and number of output fields. As in the previous

experiment, having a single model that can assimilate observations into multiple fields is desired. The two fields considered in

this experiment are SSH and SST, tested individually and jointly. The primary objective is to investigate whether a moderately330

complex CNN model can assimilate observations from multiple fields as effectively as from a single field.

3.3.5 Percentage of Ocean

Given that CNNs were originally designed for image processing, they typically do not account for non-valid pixels like land

areas. This experiment varies the minimum ocean area required in the training windows, testing thresholds of 0%, 30%, 60%,

and 90%. For the 0% scenario, there are no restrictions imposed on the ocean coverage within the training windows, meaning335

these windows could entirely encompass land areas. Conversely, in the 90% scenario, any training windows containing less

than 90% ocean coverage are excluded. The window size for this experiment is fixed at 160x160 pixels.

Table 2 summarizes the parameters and their respective values tested in our experiments. Each parameter was varied indepen-

dently to assess its impact on the performance of the CNN models in assimilating oceanographic data. By exploring different

combinations of window sizes, CNN complexities, ocean percentages, inputs, and outputs, we aimed to gain comprehensive340

insights into the behavior and capabilities of the models under various conditions. Each tested model is trained five times to
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gather statistics on the training’s consistency and allow a more accurate comparison between the models’ performances. A total

of 75 CNN models are evaluated in these experiments.

Table 2. Parameters and their tested values in the experiments.

Parameter Values Tested

Window Size 384× 520, 160× 160, 120× 120, 80× 80

CNN Complexity SimpleCNN_02, SimpleCNN_04, SimpleCNN_08, SimpleCNN_16, U-Net

Ocean Percentage 0%, 30%, 60%, 90%

Inputs SSH — SSH and SST — SSH, SST, SSH Error, and SST Error

Outputs SSH — SST — SSH and SST

3.4 Training hyperparameters

All models are trained using the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 10−3. The loss function used345

is the Mean Square Error (MSE), evaluated between the increment provided by the CNN and the one generated by the T-SIS

model. The MSE loss is only evaluated in the grid cells where there is ocean, and the CNN models’ outputs are always masked

by land areas, which are irrelevant for data assimilation in the ocean. We used a batch size of 32 to train the models. All

trainings are ended when the error in the loss function of the validation set has not decreased for 20 epochs, the model with the

lowest validation loss is used for the statistics.350

We conducted initial experiments incorporating a Dropout rate of 20% after the convolutional layers. However, we observed

that the networks with Dropout exhibited lower performance compared to those without Dropout. This could be attributed to

the size of our training dataset, which may not be large enough for Dropout to be effective. Consequently, we opted not to

include Dropout in our final models to maintain optimal performance.

Regarding optimizer selection, we used the standard Adam optimizer with default parameters in our experiments. We ac-355

knowledge that the AdamW optimizer, which includes decoupled weight decay for L2 regularization, could potentially enhance

generalization by applying a stronger weight penalization. We plan to explore the use of AdamW with increased weight decay

in future work to assess its impact on model performance.

4 Results

In this section we describe and analize the results from the proposed experiments to use CNN for data assimilation in ocean360

models. For each combination of parameters five models are trained, the error bar plots show the mean (orange line), median

(green triangle) and standard deviation of the models. The statistics are obtained from the test set, with dates from October 19th

to December 31st of 2010 . For all the experiments the y axis is the RMSE in meters (already denormalized) of the difference

between the increment provided by T-SIS and the one provided by the CNN.
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4.1 Window Size365

Figure 6 shows a performance comparison with respect to the window size used to train the networks. In this experiment, all

other parameters remain fixed, with U-Net serving as the default architecture. The SSH increment is used as the target output,

and the SSH background state xf
t and satellite altimeter observations yt are used as inputs. Furthermore, a mask delimiting

areas in the GoM deeper than 200 meters is included as input because T-SIS does not generate any SSH increment for shallow

areas. To enable the CNN to learn this restriction, we provided this mask as an additional input channel.370

Figure 6. RMSE comparison between CNN models and the T-SIS method across different window sizes on the test dataset.

The experiment reveals a clear relationship between the model’s performance and the size of the window used for training.

Larger windows yield better performance, and using the entire domain for training achieves the best results. These results

indicate that the CNN is benefiting from the context of the full domain and is not being affected by the reduced number of

training examples that this configuration generates.

The inclusion of latitude and longitude as additional inputs does reduce the RMSE of the models, specially those that375

are trained with smaller windows as shown in Figure 7. This indicates that the additional input layers provide useful spatial

information to the models. The tendency still remains the same, larger windows yield better performance and the best results

are obtained when the entire domain is used for training.

4.2 CNN complexity

Figure 8 presents the results of the comparison of the CNN architecture and complexity. As before, all other parameters remain380

fixed. In this case, we used the full domain to train the models, with SSH increment used as the target output, and SSH

background state, shallow water mask, and satellite altimeter observations serving as input.
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Figure 7. RMSE comparison between CNN models and the T-SIS method across different window sizes on the test dataset. With the inclusion

of latitude and longitude as additional inputs.

Figure 8. RMSE comparison between CNN models and the T-SIS method across different architectures on the test dataset.

The results illustrate that, for the problem of data assimilation in ocean models mimicking the optimal interpolation method,

the CNNs’ performance improves with increased complexity in their architecture. Two key observations include: the expo-

nential decay observed in the RMSE of the loss function relative to the complexity for the SimpleCNN architectures (as the385

number of hidden layers increases), and how the more advanced U-Net architecture, incorporating batch normalization, skip
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connections, and an encoder-decoder design, yields the best performance. It’s worth noting from this experiment that although

there’s a clear relationship between the complexity of the CNNs’ architectures and the performance obtained, the difference

between them is not too big. The SimpleCNN architecture with only four hidden CNN layers already approximates the T-SIS

data assimilation package with a RMSE of just 8 mm.390

4.3 Ocean Percentage

Figure 9 presents the results of the experiment that compares the percentage of ocean required in the training windows. Recall

that the goal of this experiment is to investigate how grid cells with land areas can affect the training of the CNNs—a problem

that is not common in computer vision problems. For this experiment, the window size is fixed at 160× 160, the network

architecture is the U-Net, the SSH increment is used as the target output, and the SSH background state and satellite altimeter395

observations are used as inputs.

Interestingly, we do not identify a clear trend between the performance of the CNNs and the percentage of ocean specified

in the training examples. These results suggest that CNNs are not significantly affected by land grid cells when addressing the

problem of data assimilation in ocean models.

Figure 9. RMSE comparison between CNN models and the T-SIS method across different percentages of ocean areas in training examples

on the test dataset.

4.4 Inputs400

Figure 10 presents the results of including additional observations as input into the models. For this experiment, the rest of the

parameters are as follows: U-Net is used as the network architecture, the entire domain is used to train the models, and the SSH

increment serves as the target output. The three tested input observations are the satellite altimeter tracks (SSH), the altimeter
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tracks combined with SSH and their corresponding observational errors (SSH, SSH-ERR, SST, SST-ERR), and the altimeter

tracks combined with SST, but without the error information (SSH, SST).405

Figure 10. Comparison of the test RMSE loss by the number and types of input fields.

This experiment reveals how the CNN models might benefit from additional observations as inputs. The performance im-

proves when the error of the observations is included as an input (as an extra channel in the input layer), and the variance

of the trained models improves when including SST observation as an input variable. It is expected that the performance im-

proves by including the observational error because T-SIS uses it to compute the increment—the error covariance matrix of

the observations, R−1
t in equation 6, contains this information. However, it’s noteworthy to show that including additional SST410

observations does not affect the model’s performance, even though we know that SST is not used by T-SIS to generate the SSH

increment.

4.5 Outputs

Finally, figure 11 presents the results of testing CNNs to simultaneously generate multiple data assimilation increments, in this

case, SSH and SST. The rest of the parameters are as follows: U-Net is used as the network architecture, the entire domain is415

used to train the models, and the SSH increment serves as the target output. The three output increments tested are the satellite

altimeter tracks (SSH), sea surface temperature (SST), and both together (SSH, SST).

For this final experiment, it’s important to note that the Y-axis is in meters for the first two models, SSH and SSH, SST,

but it is in degrees for the last case of SST. The key takeaway from this experiment is that the performance in predicting the

SSH increment is not affected when the model is tasked with generating both increments (SSH and SST) simultaneously. This420

indicates the ability of the CNNs to manage multiple outputs without a significant drop in performance for individual tasks.
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Figure 11. RMSE comparison of CNN models by the number and types of output fields, evaluated in the test dataset.

4.6 Generalization Tests

Following the series of experiments in the previous section, which provide insights in the performance of CNNs in an op-

erational ocean model setting with data assimilation, the best model was selected based on optimal parameters. This model

utilized the U-Net architecture, was trained using the entire domain of the Gulf of Mexico (GoM) for training examples, and425

incorporated the SSH observations, the SSH observation errors, the SSH background state, and a binary mask indicating depths

greater than 200 meters as inputs. The desired output was the increment of SSH, essentially the corrections to be made to this

field in the model on a daily basis.

The ability to generate complete assimilated fields from sparse observations is a fundamental aspect of the data assimilation

process. By taking advantage of the spatial covariance structures and dynamical relationships within the ocean model, the430

DA scheme can infer the state of the ocean in regions without direct observations. Our CNN models are trained to learn this

mapping from inputs (sparse observations and background state) to outputs (complete increments), effectively capturing the

essence of the DA process eventhough the sparse observations are filled with zeros.

Figure 12 illustrates a comparison between the SSH increment as predicted by T-SIS and the increment predicted by the

CNN model for a specific day, October 27th, 2010, from the test dataset. Generally, the overall predictions are similar, with435

the RMSE across the entire domain in this example being 3.2 mm. This day was randomly selected to provide a representative

example of the model’s performance in a typical scenario.

However, the figure also reveals some discrepancies, primarily at the peripheries of areas where there is an increment. This

could potentially be attributed to a hard threshold within T-SIS that doesn’t provide any increments beyond a certain distance
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from the observation. An expected pattern from Figure 12 is that the corrections to the model are made predominantly close to440

the locations of the satellite tracks.

Figure 12. Comparison of predicted model error (increment) for sea surface height from the T-SIS in the top left panel, and from the proposed

CNN model in the top right panel. The middle bottom panel displays the root mean square (RMS) error between both predictions.

Figure 13 depicts RMSE for the entire test set, ranging from October 19th to December 31st of 2010, as well as the initial

days of the year used for training. The mean RMSE for all the test set is 3.72 mm, while for the days used for training it is

3.51 mm. This suggests that the CNN model is effectively generalizing to unseen examples. However, two points need to be

considered in this analysis:445

1. The Gulf of Mexico’s dynamics do not change rapidly over time. Hence, the dynamical state of the GoM for the test set

might be quite similar to the state used for training the model.

2. There is a slight discrepancy in the mean RMSE between the training and test sets, indicating that a more comprehensive

experiment is necessary to understand how effectively the model generalizes to unseen examples where the GoM’s

dynamical state differs from that in the training set.450

To scrutinize the model’s ability to generalize across different dynamical states of the GoM, two contrasting years were

chosen based on the states of the Loop Current (LC), the key driver of ocean dynamics in the GoM. Notably, it’s challenging
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Figure 13. RMSE of the proposed CNN model for the year 2010. The vertical green line indicates the date where the test dataset starts. The

two dashed lines indicate the RMSE of the training and test sets.

to confidently predict how a trained model will perform on unseen data. In experiments that use synthetic data, it is simpler to

identify examples that fall outside of the training distribution, but in this scenario, the process is not as straightforward. The

assumption is that the CNN model will learn to assimilate observations in the GoM comparable to the optimal interpolation455

method in T-SIS and will generalize correctly to data from different years, regardless of the GoM’s dynamical state.

The years 2002 and 2006 were selected for this test. In 2002, the LC is primarily in a contracted state, while in 2006, it is

predominantly in an extended state, with some eddies being shed throughout the year. New assimilated runs of HYCOM and

T-SIS were created for these two years as described earlier, featuring a 1/25◦ spatial resolution and using NCEP CFSR/CFSv2

as the atmospheric forcings.460

Figure 14 showcases a day from 2002 and 2006, emphasizing the different dynamical states of the GoM for these two years.

The RMSE of the proposed model, trained with data from 2009 and 2010, is 4.39 mm for 2002 and 4.22 mm for 2006. This

demonstrates how effectively the model is generalizing to new data and varying states of the GoM. It is anticipated that the

model will yield similar results, with an RMSE around 4 mm, for any other timeframe of the GoM. Figure 15 presents the

RMSE obtained for every day in 2002 and 2006, along with the mean for the two years. The RMSE has increased from 3.7 mm465

in the test set to 4.2 mm in this new generalization test. This underscores the importance of identifying appropriate scenarios to

test the generalization of our models. Specifically, in the context of ocean models, it is crucial to evaluate the model in different

dynamical scenarios than the ones used for training the models to avoid overestimating metrics that may not hold up when

using the model operationally.
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Figure 14. Contrasting dynamical states of the Gulf of Mexico for years 2002 and 2006. The left panel illustrates the retracted Loop Current

on April 20th, 2002, while the right panel depicts the extended Loop Current on April 20th, 2006. Both cases are representative of the mean

dynamical state of the GoM for that respective year.

4.7 Performance Comparison470

The primary objective of this study is to explore the use of Convolutional Neural Networks (CNNs) as a more efficient alter-

native to traditional data assimilation methods in oceanographic modeling. Comparing the performance between the proposed

CNN model and the traditional T-SIS optimal interpolation method presents several challenges.

The proposed CNN model, still in the prototype stage, assimilates surface data for a single field at a time, and in some

experiments, two fields. In contrast, the T-SIS data assimilation software is a fully operational package that simultaneously475

assimilates all HYCOM fields, including temperature, sea surface height, velocity fields U and V, salinity, in the 41 vertical

layers of the model. Furthermore, the T-SIS package is implemented in FORTRAN and is typically run on clusters of tens to

hundreds of CPUs at High Performance Computing (HPC) centers. Meanwhile, the proposed CNN model is implemented in

TensorFlow with Python and utilizes GPUs, which may contain thousands of smaller processors.

In this performance analysis, we compare the times taken by T-SIS to assimilate a single day of observations under two480

different settings. The first setting involves execution on a cluster with 32 processors at the Florida State University HPC

center, and the second on the Narwhal Navy Super Computer with 96 processors. The proposed CNN model, assimilating a

single surface field (one day) takes 0.054± 0.005 seconds on an NVIDIA Quadro RTX 4500 GPU.

To estimate performance in a full 3D context (assimilating 5 fields across 41 vertical layers), we consider two scenarios. The

first scenario, labeled CNN Sequential, assumes no further parallelization, requiring multiplication of our observed times by485

both the number of fields and vertical levels (41*5). The second scenario, CNN Parallel, assumes complete parallelization in

3D. The potential speedup of the proposed CNN model, compared to the 32-processor T-SIS, ranges from 1.9 to 389. Against

the 96-processor T-SIS configuration, the speedup ranges from 0.73 (slower) to 150. The speedup or speedup factor is a unitless

measure defined as the ratio of the time taken by the traditional T-SIS method to the time taken by our proposed CNN model

for the same assimilation task. For example, a speed-up factor of 58 indicates that the CNN model performs the assimilation 58490
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Figure 15. Root Mean Square Error (RMSE) of the proposed CNN model for the years 2002 (top panel) and 2006 (bottom panel). Vertical

dashed lines represent the mean error across each respective year.

times faster than the T-SIS method running on a 32-processor cluster, while a speed-up factor of 22 signifies a 22-fold increase

in performance compared to the 96-processor T-SIS configuration.

Given the broad range of these results, we simulate the assimilation of all vertical layers by running our model in batches of

41, providing a more practical metric. In this scenario CNN 41 Batch, it takes 0.36± 0.01 seconds to perform a single day’s

assimilation, resulting in more realistic expected speed-ups of 58 compared to the 32-processor T-SIS and 22 compared to the495

96-processor T-SIS.
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Table 3 displays the times, in seconds, taken by the T-SIS package to assimilate one day of data on an HPC with 32 and 96

processors, along with estimates for times our model would require, assuming the ability to parallelize only the vertical layers

as a batch and when full parallelization of the five fields is possible.

Table 3. Comparison of simulation times for a single day of assimilated observations using T-SIS across various CPU configurations and the

proposed CNN model with multiple estimated parallelization schemes.

T-SIS 32 Procs T-SIS 96 Procs CNN Sequential CNN Parallel CNN 41 Batch

Time 21± 0.3 s 8.11± 0.5 s 11.07± 0.1 s 0.054± 0.005 s 0.36±0.01 s

Speedup vs 32 Proc 1x 2.59x 1.90x 388.89x 58.33x

Speedup vs 96 Proc 0.38x 1x 0.73x 150.19x 22.53x

5 Conclusions500

In this work, we conducted a series of experiments to analyze the performance of Convolutional Neural Networks (CNNs) in

emulating the data assimilation process within a realistic operational model setting. These experiments assessed various aspects

of the CNNs, including architecture complexity, the types and quantities of observations (inputs), assimilated fields (outputs),

responses to window size, and the influence of coastline on model performance.

The results demonstrated a clear relationship between the training window size and performance; larger window sizes gen-505

erally better results, particularly when the full domain was used as the training window. Our experiments incorporating nor-

malized latitude and longitude fields as inputs did not yield significant improvements in model performance. There was also a

distinct correlation between the complexity of the CNN architecture and its performance, with deeper networks achieving su-

perior outcomes and the U-net-based architectures outperformed other models. Our initial comparison between Simple CNNs

and the U-Net architecture provided valuable insights into the importance of network complexity and the use of skip con-510

nections in capturing the spatial features necessary for accurate data assimilation emulation. Although Simple CNNs are less

commonly used in current geoscience applications, this analysis was important in demonstrating the necessity of employing

advanced architectures like U-Net for such complex tasks.

Our findings also indicated that even a shallow CNN with a simple architecture could assimilate SSH observations with

an error margin of only 8 mm, compared to the T-SIS assimilation package. Additionally, experiments assessing the impact515

of land on ocean models revealed that CNNs remained robust against land by simply zeroing out these regions, not affecting

the models’ performance based on the percentage of ocean used in the training data. Moreover, the experiments showcased

the CNNs’ ability to efficiently handle additional inputs without performance degradation and to assimilate multiple fields

simultaneously. Another important aspect highlighted through our study is the importance of selecting appropriate test sets to

evaluate the generalization capabilities of deep learning models, particularly when dealing with realistic ocean models over520

shorter time scales such as weeks or months. Using a random selection of training data as a test set could lead to misleadingly

favorable results if the oceanographic conditions do not change significantly.
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Data leakage is a critical issue in machine learning applications within Earth sciences due to the temporal and spatial

dependencies in the data. Our approach of chronological data splitting and testing on entirely separate years aims to mitigate

this concern. To test the generalization of our proposed model, we utilized data from two different years that presented varied525

dynamical states of the GoM. Although errors were slightly higher than with the initial test data (maybe due to the proximity

of the training and test sets), an error of 4 mm was observed as a typical value when applying our CNN data assimilation (DA)

method, and this is the expected error of our model in operational systems.

Furthermore, we compared the time performance of a traditional DA method (optimal interpolation), implemented in FOR-

TRAN and executed on High-Performance Computing clusters, with our proposed CNN method running on a single GPU.530

These comparisons, while challenging, provided insights into potential time and cost savings achievable with new technolo-

gies. In our tests, the CNN model approximated the DA optimal interpolation method with less than a 4 mm error for SSH and

achieved potential speedups of up to 58 times compared to systems running on a 32-processor cluster.

Despite ongoing research into explainable AI, which aims to better understand decisions made by deep learning models,

these techniques typically do not analyze specific performance comparisons related to model design decisions. This work535

offers insights into the expected behavior of CNNs when applied to the specific problem of data assimilation in ocean models.

Most findings from the proposed experiments should also be applicable in other scenarios where CNN models are used for

’image-to-image’ modeling in oceanic and atmospheric predictions involving geographic coordinates and diverse fields.

While our study focused on traditional CNN architectures, specifically U-Nets, we acknowledge that newer deep learning

techniques such as attention-based models (e.g., CBAM in SmaAt U-Nets), Vision Transformers (ViT), and Denoising Diffu-540

sion Models have demonstrated superior performance in various image processing tasks by preserving fine details and reducing

smoothing effects. Incorporating these advanced architectures into ocean data assimilation represents a promising direction for

future research. However, due to computational constraints and the scope of this study, we did not explore these models. Future

work will aim to investigate these techniques, leveraging their strengths to further enhance the accuracy and efficiency of data

assimilation in ocean models.545
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