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Abstract. Deep learning models have demonstrated remark-
able success in fields such as language processing and com-
puter vision, routinely employed for tasks like language
translation, image classification, and anomaly detection. Re-
cent advancements in ocean sciences, particularly in data
assimilation (DA), suggest that machine learning can emu-
late dynamical models, replace traditional DA steps to ex-
pedite processes, or serve as hybrid surrogate models to en-
hance forecasts. However, these studies often rely on ocean
models of intermediate complexity, which involve significant
simplifications that present challenges when transitioning
to full-scale operational ocean models. This work explores
the application of convolutional neural networks (CNNs) in
data assimilation within the context of the HYbrid Coordi-
nate Ocean Model (HYCOM) in the Gulf of Mexico. The
CNNs are trained to correct model errors from a 2-year, high-
resolution (1/25°) HYCOM dataset, assimilated using the
Tendral Statistical Interpolation System (T-SIS). The CNNs
are trained to replicate the increments generated by the T-
SIS data assimilation package, aiming to correct model fore-
casts of sea surface temperature (SST) and sea surface height
(SSH). The inputs to the CNNs include real satellite observa-
tions of SST from the Group for High Resolution Sea Surface
Temperature (GHRSST), along-track altimeter SSH obser-
vations (ADT), the model background state (previous fore-
cast), and the innovations (differences between observations
and background). We assess the performance of the CNNs
across five controlled experiments, designed to provide in-
sights into their application in environments governed by full
primitive equations, real observations, and complex topogra-
phies. The experiments focus on evaluating (1) the architec-
ture and complexity of the CNNss, (2) the type and quantity of

observations, (3) the type and number of assimilated fields,
(4) the impact of training window size, and (5) the influence
of coastal boundaries. Our findings reveal significant corre-
lations between the chosen training window size — a factor
not commonly examined — and the CNNs’ ability to assim-
ilate observations effectively. We also establish a clear link
between the CNNs’ architecture and complexity and their
overall performance.

This research uses artificial intelligence to enhance ocean
forecasting in the Gulf of Mexico. By using convolutional
neural networks, the study improves predictions of sea tem-
peratures and heights by integrating real satellite data with
existing models. Through five comprehensive experiments,
the team found that the amount of training data and the
design of the neural networks significantly affect accuracy.
These insights pave the way for faster, more reliable ocean
models, benefiting environmental monitoring and maritime
operations.

1 Introduction

Assimilating diverse observations into operational ocean
models presents significant challenges, primarily due to the
computational demands and complexities associated with
traditional methods like four-dimensional variational data as-
similation (4DVar) or variations in the ensemble Kalman fil-
ter (EnKF). These methods, while robust, require substantial
computational resources and time: 4DVar in the integration
of the adjoint model and EnKF in the integration of the physi-
cian model itself. The data assimilation process can be par-
ticularly time-consuming when dealing with heterogeneous
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and high-volume datasets, which are becoming more com-
mon in oceanographic research. Machine learning methods,
on the other hand, offer a promising alternative that could
potentially accelerate this assimilation process.

Recent works in ocean sciences explore the feasibility and
effectiveness of using techniques such as neural networks
(NNs) to improve ocean models. For example, it has been
explored how the entire variational data assimilation sys-
tem could be substituted with machine-learning-based ap-
proaches (Geer, 2021; Boukabara et al., 2019; Dong et al.,
2022). While this approach is still maturing, there is consid-
erable interest in using machine learning to enhance existing
data assimilation systems.

Additionally, machine learning methods have been applied
to specific components of data assimilation systems in ocean
models. For instance, it has been discussed how neural net-
works can be used for the fast emulation of forward mod-
els, which are crucial for the direct assimilation of satellite
measurements in ocean models (Krasnopolsky, 2013). Fur-
thermore, machine learning (ML) observation operators have
been developed to improve the assimilation of surface obser-
vations such as sea surface temperature and ocean surface
elevation (Guinehut et al., 2004).

This work investigates the use of convolutional neural net-
works (CNNs) to assimilate sea surface height and sea sur-
face temperature observations with the HYbrid Coordinate
Ocean Model (HYCOM). The CNNs are trained to correct
the model error from a 1/25 resolution 2-year-long data-
assimilated HYCOM run with the Tendral Statistical Inter-
polation System (T-SIS) as the assimilation package. The
performance of the CNNs is studied through five controlled
experiments that provide insight into how to apply them in
settings with full primitive equations, real observations, and
complex topographies.

The experiments evaluate the architecture and complexity
of the CNN, the type and number of observations, the type
and number of assimilated fields, the response to the train-
ing window size, and the effects of the coastline. Our results
show strong correlations between the window size selected
to train the CNN, which is not commonly evaluated, and the
ability of the CNN to assimilate the observations. Similarly,
we found a clear relationship between the complexity of the
chosen CNN and its overall performance.

Section 2 and 2.1 provide a small overview of HYCOM
and the T-SIS assimilation system. Section 2.2 provides
an introduction to CNNs and the U-net architecture. Sec-
tion 3 describes the controlled experiments using CNNs, and
Sect. 4 describes the results, the generalization tests per-
formed, and the performance comparison with T-SIS. We end
with conclusions and final remarks in Sect. 5.
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2 The HYbrid Coordinate Ocean Model (HY COM)

The HYbrid Coordinate Ocean Model (HYCOM) is a state-
of-the-art multi-layer ocean model (Bleck, 2002; Chassignet
et al., 2003, 2007, 2009; Chin et al., 1999). A key feature
of HYCOM is the use of a hybrid vertical coordinate. While
the horizontal coordinates are typically Cartesian, the verti-
cal coordinate need not be restricted to represent the verti-
cal distance from a specified origin, the so-called “z coor-
dinate”. In various parts of an ocean basin, the layer flow
may be driven more strongly by different processes, which
in turn gives preference to the use of a more suitable verti-
cal coordinate. In the open stratified ocean, for example, the
ocean flow typically follows along layers of constant poten-
tial density (isopycnals). For shallow coastal regions, terrain-
following coordinates may be more suitable to characterize
the flow subject to the kinematic constraints provided by the
bathymetry. In the surface mixed layer or where the ocean is
un-stratified, fixed pressure level coordinates may better rep-
resent the flow. The detailed choices for vertical coordinates
for HYCOM are discussed in Chassignet et al. (2003).

The primitive equations of the HYCOM are detailed in
Bleck (2002):
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where v is the horizontal velocity vector, s is the vertical co-
ordinate, ¢ is the relative vorticity, f is the Coriolis parame-
ter, k is the vertical unit vector, p is pressure, M = gz+ pa is
the Montgomery potential, « is the potential specific volume,
T is the horizontal wind stress at the surface or drag at the
ocean bottom, 0 is one of two thermodynamic variables (ei-
ther temperature or salinity), and v is the eddy viscosity co-
efficient. The first, Eq. (1), is the momentum equation for the
components of v, yielding two scalar equations. The second,
Eq. (2), is the mass continuity equation. The third, Eq. (3),
represents two scalar thermodynamic equations, one for each
thermodynamic variable. Thus, there are a total of five equa-
tions that are being solved. A unique feature of HYCOM is
that the vertical coordinate system can be modified at any
given time step during model integration as flow conditions
change. This is done through the use of a grid generator.

In addition to the equations above, HYCOM includes pa-
rameterizations that take into account other physical pro-
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cesses, such as vertical mixing (possibly due to turbulence),
convection, and sea ice. HYCOM is a highly configurable
model that can be run at a wide range of horizontal reso-
lutions and vertical levels and can be driven using readily
available lateral and boundary conditions (e.g., surface wind-
forcing, tidal forcing, and bathymetry).

2.1 HYCOM data assimilation system

The HYCOM modeling system in this study utilizes the T-
SIS data assimilation system (Srinivasan et al., 2022). In the
earliest version of this system, T-SIS followed the classi-
cal Kalman filter approach for optimal interpolation. In this
approach, it is assumed that the model forecast follows a
Markov process, which means that the future state of the sys-
tem depends only on its current state and not on any previous
states (Davis, 2013). Observations can improve the estimate
of the model state in a least squares sense, taking into account
the modeled and observed error covariances as follows:

xp=f(x)). &)
x=x 1K, (y, —H,xf), (5)

where x is the model state, f refers to the forecast opera-
tor (“the ocean model”), and the “a” superscript refers to the
analysis after observations are assimilated. The matrix K is
commonly known as the Kalman gain matrix, and it deter-
mines the relative weight given to the observations versus
the forecast by taking into account model and observation
error covariances. H is an observation operator that maps
the modeled state variables to the observation variables. In
the simplest scenario where the observations represent the
same fields and have the same spatial and temporal resolu-
tion as the model, H is just the identity operator. In most
cases, observations will sample only part of the model state;
hence H will then interpolate the corresponding field(s) of
the model state and perform any other transformation that
may be needed. The Kalman gain is computed as

-1
K, = P'H (H,P,Hf —|—R,> , 6)

where Pf is the forecast model state error covariance matrix,
and R is the observation error covariance matrix. When the
observation errors are high (R is large), K gives low weight
in the second term in Eq. (5), giving the forecast of the model
more weight. In version 2.0 of T-SIS (Srinivasan et al., 2022),
an alternative approach to calculate the Kalman gain is used.

-1
K, = (P,—1 +HtTRt_lHt) H/R; %)
The Kalman gain is computed by first defining the infor-
mation matrix as L = P!, and then the information matrix

is modeled by a Gaussian Markov random field (GMRF),
which is a probabilistic model consisting of a set of random
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variables having a multivariate Gaussian distribution, with
the Markov property that each variable is conditionally inde-
pendent of all others given its immediate neighbors (Rue and
Held, 2005). This property leads to a sparse precision (infor-
mation) matrix L, making computations more efficient. Each
element is conditionally specified based on a set of neigh-
bors. Via spatial regression (Chin et al., 1999), the neighbors
can be determined in a manner that can lead to a sparse ma-
trix for L. This approximation of the inverse error covariance
matrix results in a significant reduction in computational ex-
pense when used implicitly to solve Eq. (7). Speedups of an
order of magnitude have been reported in Srinivasan et al.
(2022).

Finally, after each assimilation step, there are further ad-
justments to the data in order to accommodate certain HY-
COM constraints, such as model layer thickness adjustments,
min—max thresholds, hydrostatic checks, and geostrophic
balance. The data used in the assimilation have wide tem-
poral and spatial availability.

2.2 Convolutional neural networks

Fully connected neural networks, or dense networks, have
approximately m x n 4+ n parameters for every layer with m
previous nodes and n current nodes. The number of param-
eters grows rapidly by incorporating additional intermediate
layers, which are commonly needed to create complex mod-
els capable of approximating nonlinear systems. This makes
dense networks impractical for training large-scale problems
encountered in domains like computer vision, where each
pixel in an image represents an input feature in the model.
However, this limitation is overcome by the introduction of
convolutional neural networks (CNNs).

CNNs are able to reduce the number of parameters in a
neural network by sharing weights across different locations
in the input data (LeCun et al., 1998). In CNNs, each neu-
ron in a layer is connected only to a small region of the
layer before it. This region is called the receptive field. This
is from an inductive bias coming from the assumption that
only nearby pixels in the images are likely to be related to
each other, thus capturing local features in the input data like
edges, textures, etc. CNNs are designed to process data with
a grid-like topology (e.g., images).

Convolutional neural networks (CNNs) employ convolu-
tions, a specialized type of linear operation, instead of gen-
eral matrix multiplication in their layers (O’Shea and Nash,
2015). A convolution involves computing the output (feature
map) by applying a filter (kernel) across the input, capturing
local dependencies among input features. This operation is
defined for sequences a and k as

b=(b). bi= Y ajki_j. (8)

j=—n

where a is the input, k the kernel, and b the resulting fea-
ture map, demonstrating local connectivity. CNN architec-
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tures typically combine convolutional layers with pooling
layers, which reduces the spatial dimensionality of feature
maps, thereby decreasing the number of operations and en-
hancing computational efficiency (O’Shea and Nash, 2015).

U-nets, originally developed by Ronneberger et al. (2015)
for biomedical image segmentation, are a type of convolu-
tional neural network (CNN) characterized by a symmet-
ric encoder—decoder architecture forming a U shape (Ron-
neberger et al., 2015). The encoder path, or contracting path,
consists of repeated applications of convolutional layers fol-
lowed by pooling layers, which progressively downsample
the input. At each downsampling step, the number of chan-
nels is typically doubled, enabling the network to capture in-
creasingly abstract features from the input data. The decoder
path upsamples the feature maps using transposed convolu-
tions or other upsampling techniques. This path reduces the
number of channels by half at each step and at the end recon-
structs the spatial dimensions of the original input. A main
feature of U-nets is the inclusion of skip connections between
corresponding layers in the encoder and decoder paths. These
connections concatenate feature maps from the encoder di-
rectly to the decoder, allowing the network to retain high-
resolution features that might otherwise be lost during down-
sampling. This design effectively preserves spatial informa-
tion and enables precise localization, which is essential for
tasks like segmentation.

Figure 1 illustrates a comparison between the classical
convolutional neural network (CNN) architecture (top panel)
and the U-net architecture (bottom panel). As previously de-
scribed, U-nets incorporate three additional components that
distinguish them from traditional CNNs.

— Pooling layers. Represented by red blocks in the figure,
these layers progressively reduce the spatial dimensions
of the feature maps.

— Upsampling convolutions. Shown as green blocks, these
layers increase the spatial resolution of the feature
maps.

— Skip connections. Depicted by blue arrows, these con-
nections concatenate feature maps from corresponding
layers in the encoder and decoder paths.

In this example, both architectures receive an input image
of size 256 x 256. The classical CNN employs convolutional
layers with a uniform configuration of 64 filters each. In con-
trast, the U-net architecture uses a varying number of filters
across its layers. Both architectures consist of 10 convolu-
tional layers that try to maintain a comparable number of pa-
rameters and similar computational operations.

Over the past decade, U-net architectures have been ex-
tensively applied to a variety of geoscience problems due to
their capability to learn hierarchical features and capture both
local and global contexts. Variants of U-net, such as the At-
tention U-net (Oktay et al., 2018) and the Small Attention U-
net (SmaAt U-net) (Roy et al., 2018), have been developed
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to enhance feature extraction and improve performance in
complex geoscientific tasks. These variants introduce mech-
anisms like attention gates and efficient channel interdepen-
dencies, allowing models to focus on relevant features while
reducing computational requirements. Some notable applica-
tions of the use of U-nets in geoscience include the following.

— Remote sensing and Earth observation. U-nets have
been extensively used for semantic segmentation and
classification of satellite imagery, including land cover
mapping (Russwurm and Korner, 2018), building and
road extraction (Maggiori et al., 2017; Demir et al.,
2018), and change detection (Daudt et al., 2018).

— Meteorology and climate science. U-net architectures
have been employed for precipitation nowcasting using
radar data (Agrawal et al., 2019).

— Hydrology and flood mapping. U-nets have been applied
to flood detection and mapping from satellite images
(Pech-May et al., 2024) and mountain ice segmentation
(Tian et al., 2022).

— Oceanography. U-net architectures have been utilized
in oceanography for bathymetry estimation from optical
imagery (Nicolas et al., 2023) and ocean eddy detection
and classification (Lguensat et al., 2018).

— Data assimilation and ocean modeling. Beauchamp
et al. (2022) introduced multimodal 4DVarNets, where
U-net-based architectures obtain similar results to
4DVarNets for the reconstruction of sea surface dynam-
ics by leveraging synergies between sea surface temper-
ature (SST) and sea surface height (SSH) observations.
Their work demonstrates the capability of deep learn-
ing models to assimilate multiple data modalities and
reconstruct ocean surface variables with high accuracy.

The versatility of U-net architectures in geoscientific ap-
plications makes them a suitable choice for data assimila-
tion in ocean modeling, given their ability to capture spatial
dependencies and manage multiscale features. This capabil-
ity aligns well with the demands of integrating observational
data into ocean models, motivating our choice to adopt this
architecture.

3 Data assimilation with convolutional neural networks

In this section, we explore the use of convolutional neural
networks (CNNss) as a data assimilation technique for ocean
models. We assess the performance of multiple CNN mod-
els across five experimental setups. These models assimi-
late data from sea surface temperature (SST) and sea sur-
face height (SSH) observations. Their performance is com-
pared with results obtained through the optimal interpola-
tion method implemented in T-SIS. The experiments are con-
ducted in the Gulf of Mexico, covering a domain from 18.09
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Stacked CNN
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Figure 1. Comparison of the classical CNN architecture (a) vs. the U-net architecture (b).

Gulf of Mexico Domain
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Figure 2. This map illustrates the geographic limits within the Gulf
of Mexico used for our experiments.

to 31.96° latitude and —98.0 to —77.04° longitude, as de-
picted in Fig. 2.
3.1 Data

The ocean model used is the HYbrid Coordinate Ocean
Model (HYCOM) with a spatial resolution of 1/25°. The
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GOMDb0.04 domain is set up with the high-resolution 1km
bathymetry of the Gulf of Mexico (Panagiotis, 2014) over
a domain going from 18 to 32°N in latitude and from 98
to 77°E in longitude. With 41 hybrid layers in the vertical,
the latest version of HYCOM (2.3.01: https://github.com/
HYCOM/HYCOM-src, last access: 1 June 2024) is forced
at the surface with the NCEP CFSR/CFSv2 hourly atmo-
spheric forcing. The lateral open boundaries are relaxed
to daily means of the global HYCOM GOFS3.1 reanaly-
sis (https://www.hycom.org/dataserver/gofs-3ptl/reanalysis,
last access: 1 June 2024). The initial conditions are taken
from a 20-year reanalysis created with the same configura-
tion.

The T-SIS package, detailed in Sect. 2.1, is utilized with
HYCOM for producing the increments, which are used
to correct the model state and generate the analysis. To
optimize the system’s performance for the HYCOM La-
grangian vertical coordinate system, subsurface profile ob-
servations are first layerized (re-mapped onto the model’s hy-
brid isopycnic—sigma—z vertical coordinate system) prior to
assimilation. The analysis procedure then updates each layer
separately in a vertically decoupled manner. A layerized ver-
sion of the Cooper and Haines (1996) procedure is used to
adjust model layer thicknesses in the isopycnic-coordinate
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interior in response to SSH anomaly innovations (differences
between observed values and the background state). In the
data assimilation field, innovations refer to the differences
between the observed values and the model’s background
(prior) estimates of those values, expressed in the observa-
tion’s frame of reference. Before calculating SSH innova-
tions the mean dynamic topography (MDT) is added to the
altimetry observations. A MDT derived from a 20-year free
run of the GOMbO0.04 configuration is used for converting a
sea level anomaly (SLA) to SSH. The multiscale sequential
assimilation scheme based on a simplified ensemble Kalman
filter (Evensen, 2003; Oke et al., 2002) is used to combine
the observations and the model to produce best estimates of
the ocean state at analysis time.

To train the CNN models, we use real satellite observations
of sea surface temperature (SST) from the Group for High
Resolution Sea Surface Temperature (GHRSST) dataset and
along-track altimeter sea surface height (SSH) observations
(ADT). The model background state, representing the previ-
ous forecast from HYCOM, is also used as input. Addition-
ally, the increments are also used as input, which are the dif-
ferences between the observations and the model background
state. The CNNs are trained to replicate the increments gen-
erated by the T-SIS data assimilation package. In summary,
the CNNs learn to map the background state, observations,
and innovations to the increments, effectively emulating the
data assimilation step performed by T-SIS.

It is important to note that while the SST observations
from GHRSST provide near-complete spatial coverage, the
SSH observations from along-track altimeter data are sparse
and irregularly distributed. The DA schemes are able to han-
dle such sparse datasets and propagate the observational in-
formation across the model domain. This is achieved through
statistical interpolation and the physical dynamics repre-
sented in the model by the T-SIS system, which together al-
low us to estimate the ocean state in unobserved areas based
on the available observations.

This assimilative ocean model configuration is initially run
for 2 years (2009 and 2010), generating a total of 730 daily
outputs. These outputs are used to train and validate the pro-
posed CNN models. Each day’s increment fields of SSH and
SST, K:(y,— H ,xtf), the background state xf, and the obser-
vations y, are employed to train the CNN models.

In Earth sciences, particularly in ocean modeling, data
leakage is a significant concern due to the strong tempo-
ral autocorrelation in the data. The state of the ocean does
not change dramatically over short periods, which means
that random splitting of data can lead to leakage where the
model learns from future information. To mitigate this, we
employed a chronological data splitting strategy. From the
730 daily examples the first 80 % is used for training, 10 %
for validation, and the last 10 % for testing, ranging from
19 October to 31 December 2010. This method ensures that
the model is trained on past data and evaluated on future data,
reducing the risk of information from the test set influencing
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the training process. However, we recognize that the proxim-
ity of the training and test sets may still allow for some data
leakage due to the ocean’s slow-changing nature.

To further assess the model’s ability to generalize and
to address potential data leakage, we tested the model on
datasets from the years 2002 and 2006. These years were se-
lected because they exhibit different dynamical states of the
Gulf of Mexico (GoM), with the loop current mostly in re-
tracted and extended phases, respectively. By evaluating the
model on data that are entirely separate from the training
and validation sets and representing different oceanographic
conditions, we reduce the likelihood that the model’s perfor-
mance is artificially inflated due to data leakage.

The model maintained strong performance in these addi-
tional datasets, with RMSE values comparable to those on
the original test set as described in the “Generalization tests”
section.

3.2 Preprocessing

Prior to training the convolutional neural network (CNN)
models, we performed several preprocessing steps to ensure
that the input data were appropriately scaled and formatted.
First, to address the issue of differing value ranges among
the input variables, we normalized each field individually.
This normalization involved adjusting each input field — such
as sea surface temperature (SST) observations and sea sur-
face height (SSH) observations — to have a mean of zero
and a standard deviation of 1. Normalization is an impor-
tant step in machine learning, as it ensures that all input fea-
tures contribute equally during training, preventing variables
with larger magnitudes from disproportionately influencing
the model’s learning process. By standardizing the inputs,
we facilitated a more stable and efficient optimization during
model training.

The parameters used for normalization, specifically the
mean and standard deviation for each input field, were cal-
culated using the data from the full training period, encom-
passing the years 2009 and 2010. These calculated parame-
ters were then applied to the validation and test datasets, as
well as to the additionally tested years 2002 and 2006.

After the CNN models generated the predicted increments,
we applied an inverse transformation using the previously
calculated mean and standard deviation to denormalize the
outputs. This denormalization step converted the increments
back to their original units — such as degrees Celsius for SST
or meters for SSH — making them compatible with the model
forecast corrections. By restoring the original scale of the
data, we ensured that the increments could be directly ap-
plied to the HYCOM outputs.

We addressed the irregular distribution and missing values
of the along-track altimeter SSH data by mapping these ob-
servations onto the model grid and filling the missing data
points with zeros. Representing the absence of observations
with zeros allowed the CNN models to process the SSH data
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as continuous fields, where zeros explicitly indicated loca-
tions without observational data. The response of the CNN
to missing values represented as zeros is of interest to us and
was part of the experiments.

The loss function was computed only over ocean grid
points. This ensured that the network focused solely on learn-
ing the ocean dynamics and was not penalized for predictions
over land. After the models were trained and used for predic-
tions, we applied the land mask to set the values at land grid
points to not a number (NaN). This step ensured that the out-
put fields contained valid data only over ocean areas, align-
ing with the physical reality that oceanographic variables are
undefined over land.

Additionally, since T-SIS does not provide SSH incre-
ments for shallow areas (depths less than 200 m), we in-
cluded a mask indicating areas with depths greater than
200 m. This depth mask was provided as an additional in-
put channel to help the CNN learn this restriction and avoid
predicting increments in shallow regions where T-SIS does
not apply corrections.

The input tensors to the CNN models are four-dimensional
arrays with the following dimensions: batch size, height,
width, and channels. The numbers for height, width, and
channels vary depending on the experiment. All input ten-
sors are of type float32 (single-precision floating-point type).

3.3 Experiments

The CNNs’ performance is assessed through five controlled
experiments designed to test the expected behavior in prac-
tical operational settings with full primitive equations, real
observations, and complex topographies. These experiments
investigate the CNNs’ response relative to the size of the spa-
tial windows used for model training, the complexity of the
CNN architecture, the number and types of ocean fields used
as input and output fields, and the allowed ocean percentage
in the training examples. In the experiment analyzing net-
work complexity, we evaluated different network complex-
ities by comparing simple CNN architectures with varying
depths (2, 4, 8, and 16 layers) to the U-net architecture. This
experiment aims to assess the impact of network depth on
model performance. All subsequent experiments utilize the
U-net architecture exclusively to explore the effects of win-
dow size, input configurations, ocean percentage, etc.

It is important to note that our experiments are not twin
experiments. In twin experiments, synthetic observations are
generated from a model run (considered the “truth”) and are
then assimilated back into the model to assess the data assim-
ilation system under controlled conditions. In our study, real
observational data are used for both training and testing our
CNN models. The T-SIS data assimilation system generates
increments based on these real observations, and our CNN
models are trained to replicate these increments. By using
actual observations from GHRSST for SST and along-track
altimeter data for SSH, our experiments reflect a more real-
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istic scenario where the CNN models learn from real-world
data, capturing the complexities and uncertainties inherent in
operational ocean modeling.

Figure 3 shows an example of all the possible inputs and
outputs tested in the experiments. The first row of the in-
puts displays the sparse SSH observations and the associated
error. The second row displays the model background state
and the difference with respect to the observation. The third
row shows additional inputs for the CNN that can improve
the prediction (200 m mask and normalized latitude and lon-
gitudes). The final row shows the SSH and SST increments
produced by T-SIS and learned by the CNN model. Despite
the sparsity of the SSH observations, the CNN models pro-
duce complete increment fields by propagating the informa-
tion throughout the domain.

3.3.1 Window size

The first experiment examines the CNNs’ performance rel-
ative to the size of spatial windows used as input. Training
a CNN within a fixed domain does not guarantee effective
generalization to other domains. Despite the translational in-
variance of convolutional layers, models may develop biases
based on the specific features, such as land—sea boundaries,
within the training domain, making it challenging to gener-
alize to domains with different coastlines and ocean dynam-
ics. Conversely, using the entire domain as the training set
provides only one training example per day. Training with
smaller windows increases the number of examples, poten-
tially enhancing generalization but possibly at the expense of
losing context provided by the larger domain.

Training a model with the full domain provides just one
training example per day. When training with smaller win-
dow sizes, the total number of training examples is deter-
mined by how many sub-windows can fit within our domain.
For each dimension, the total number of sub-windows that
can be selected is given by

number of training examples = Dy — Wy + 1, )

where Dg represents the dimension size, and Wy denotes the
window size. For instance, if the domain size is 10 x 10 and
the window size is 5 x 5, we can fit a total of 6 windows in
each dimension or a total of 36 different examples. In our ex-
periments, when training the networks with a window size
smaller than the full domain, 10 random windows are se-
lected for a given day, and each epoch is completed after
1000 of these randomly selected windows are generated. The
random images change between batches and epochs. The ex-
periment compares performance across four window sizes:
the entire domain (384 x 520 pixels) and smaller windows of
160 x 160, 120 x 120, and 80 x 80 pixels (Fig. 4).

To assess the impact of spatial coordinates on model per-
formance, we conducted additional experiments by including
normalized latitude and longitude fields as input channels to
the network. The latitude and longitude values were scaled
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Figure 3. Example of all the possible inputs and outputs tested in the experiments. The first row of the inputs displays the sparse SSH
observations and the associated error. The second row displays the model background state and the difference with respect to the observation.
The third row shows additional inputs for the CNN that can improve the prediction (200 m mask and normalized latitude and longitudes).
The final row shows the SSH and SST increments produced by T-SIS and learned by the CNN model. Despite the sparsity of the SSH
observations, the CNN models produce complete increment fields by propagating the information throughout the domain.
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Figure 4. Examples of randomly selected training windows at various sizes: 385 x 520 pixels for the full domain and 160 x 160, 120 x 120,
and 80 x 80 pixels.
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Table 1. Summary of the number of hidden layers and filters tested
in each of the proposed CNN architectures.

Name CNN hidden Filter size
layers

SimpleCNN02 2 32,64
SimpleCNNO0O4 4 32,64 x 3
SimpleCNNO08 8 32,64 x7
SimpleCNN16 16 32,64 x 15
U-net 14 16 x 2,32 x 2,
64 x 2,128 x 2,64 x 2,

32x2,16x2

between 0 and 1 to align with the normalization of other in-
put features.

3.3.2 CNN complexity

The second experiment evaluates the performance of the
CNNs for data assimilation concerning the complexity of the
CNN architecture. Five different models are evaluated using
two CNN architectures. The first four models follow a simple
CNN architecture, which we refer to as SimpleCNN. Models
from this architecture are built by stacking convolutional lay-
ers with an increasing number of filters. Each hidden convo-
lutional layer employs a rectified linear unit (ReLU) activa-
tion function, and the last two convolutional layers contain a
single filter and a linear activation function. The four models
using this architecture vary in the number of hidden convo-
lutional layers with 2, 4, 8, and 16 layers. The second archi-
tecture tested follows the encoder—decoder architecture with
skip connections from the U-net (Ronneberger et al., 2015).
For this architecture, one model with 3 levels and 18 CNN
layers is evaluated. Each convolutional layer in the U-net ar-
chitecture is followed by a ReLU activation function and a
batch normalization layer, except for the final output layer.
The inclusion of batch normalization helps stabilize and ac-
celerate training and provides regularization benefits by re-
ducing the internal covariate shift. Figure 5 presents detailed
information on this model, where all CNN layers except the
last one use the ReLU activation function.

Table 1 shows the names, number of hidden layers, and
number of filters used at each hidden layer for the five model
architectures tested.

3.3.3 Input types

This experiment investigates the use of multiple ocean fields
as inputs in our models. Traditional methods, which approx-
imate the model’s error covariance matrix, face scalability
challenges when multiple fields are integrated into the as-
similation process, significantly increasing the matrix size.
By varying the input types, including SST, SSH, and their re-
spective observation errors we evaluate the potential of a uni-
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fied deep learning model to assimilate diverse data sources
effectively.

3.3.4 Outputs

This experiment evaluates the network’s performance con-
cerning the type and number of output fields. As in the pre-
vious experiment, having a single model that can assimilate
observations into multiple fields is desired. The two fields
considered in this experiment are SSH and SST, tested indi-
vidually and jointly. The primary objective is to investigate
whether a moderately complex CNN model can assimilate
observations from multiple fields as effectively as from a sin-
gle field.

3.3.5 Percentage of ocean

Given that CNNs were originally designed for image pro-
cessing, they typically do not account for non-valid pixels
like land areas. This experiment varies the minimum ocean
area required in the training windows, testing thresholds of
0%, 30 %, 60 %, and 90 %. For the 0 % scenario, there are no
restrictions imposed on the ocean coverage within the train-
ing windows, meaning these windows could entirely encom-
pass land areas. Conversely, in the 90 % scenario, any train-
ing windows containing less than 90 % ocean coverage are
excluded. The window size for this experiment is fixed at
160 x 160 pixels.

Table 2 summarizes the parameters and their respective
values tested in our experiments. Each parameter was var-
ied independently to assess its impact on the performance of
the CNN models in assimilating oceanographic data. By ex-
ploring different combinations of window sizes, CNN com-
plexities, ocean percentages, inputs, and outputs, we aimed
to gain comprehensive insights into the behavior and capa-
bilities of the models under various conditions. Each tested
model is trained five times to gather statistics on the train-
ing’s consistency and allow a more accurate comparison be-
tween the models’ performances. A total of 75 CNN models
are evaluated in these experiments.

3.4 Training hyperparameters

All models are trained using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 1073, The loss func-
tion used is the mean square error (MSE), evaluated between
the increment provided by the CNN and the one generated
by the T-SIS model. The MSE loss is only evaluated in the
grid cells where there is ocean, and the CNN models’ out-
puts are always masked by land areas, which are irrelevant
for data assimilation in the ocean. We used a batch size of 32
to train the models. All training ended when the error in the
loss function of the validation set had not decreased for 20
epochs; the model with the lowest validation loss is used for
the statistics.

Ocean Sci., 21, 113-132, 2025
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Figure 5. Detailed illustration of the U-net architecture employed in the experiments.

Table 2. Parameters and their tested values in the experiments.

Parameter

Values tested

Window size

384 x 520, 160 x 160, 120 x 120, 80 x 80
SimpleCNN_02, SimpleCNN_04, SimpleCNN_08, SimpleCNN_16, U-net

SSH; SSH-SST; and SSH, SST, SSH-ERR, and SST-ERR

CNN complexity

Ocean percentage 0 %, 30 %, 60 %, 90 %
Inputs

Outputs SSH, SST, and SSH-SST

We conducted initial experiments incorporating a dropout
rate of 20 % after the convolutional layers. However, we ob-
served that the networks with dropout exhibited lower per-
formance compared to those without dropout. This could be
attributed to the size of our training dataset, which may not
be large enough for dropout to be effective. Consequently, we
opted not to include dropout in our final models to maintain
optimal performance.

Regarding optimizer selection, we used the standard Adam
optimizer with default parameters in our experiments. We
acknowledge that the AdamW optimizer, which includes de-
coupled weight decay for L2 regularization, could potentially
enhance generalization by applying a stronger weight penal-
ization. We plan to explore the use of AdamW with increased
weight decay in future work to assess its impact on model
performance.

4 Results

In this section we describe and analyze the results from the
proposed experiments to use CNN for data assimilation in
ocean models. For each combination of parameters five mod-
els are trained, and the error bar plots show the mean (or-
ange line), median (green triangle), and standard deviation
of the models. The statistics are obtained from the test set,
with dates from 19 October to 31 December 2010. For all
the experiments the y axis is the RMSE in meters (already
denormalized) of the difference between the increment pro-
vided by T-SIS and the one provided by the CNN.

Ocean Sci., 21, 113-132, 2025

4.1 Window size

Figure 6 shows a performance comparison with respect to the
window size used to train the networks. In this experiment,
all other parameters remain fixed, with U-net serving as the
default architecture. The SSH increment is used as the target
output, and the SSH background state x,f and satellite altime-
ter observations y; are used as inputs. Furthermore, a mask
delimiting areas in the GoM deeper than 200 m is included
as input because T-SIS does not generate any SSH increment
for shallow areas. To enable the CNN to learn this restriction,
we provided this mask as an additional input channel.

The experiment reveals a clear relationship between the
model’s performance and the size of the window used for
training. Larger windows yield better performance, and us-
ing the entire domain for training achieves the best results.
These results indicate that the CNN is benefiting from the
context of the full domain and is not being affected by the
reduced number of training examples that this configuration
generates.

The inclusion of latitude and longitude as additional in-
puts does reduce the RMSE of the models, especially those
that are trained with smaller windows, as shown in Fig. 7.
This indicates that the additional input layers provide useful
spatial information to the models. The tendency still remains
the same: larger windows yield better performance, and the
best results are obtained when the entire domain is used for
training.

4.2 CNN complexity

Figure 8 presents the results of the comparison of the CNN
architecture and complexity. As before, all other parameters
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Figure 6. RMSE comparison between CNN models and the T-SIS method across different window sizes on the test dataset.
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Figure 7. RMSE comparison between CNN models and the T-SIS method across different window sizes on the test dataset, with the inclusion

of latitude and longitude as additional inputs.

remain fixed. In this case, we used the full domain to train
the models, with the SSH increment used as the target output
and SSH background state, shallow water mask, and satellite
altimeter observations serving as input.

The results illustrate that, for the problem of data as-
similation in ocean models mimicking the optimal interpo-
lation method, the CNNs’ performance improves with in-
creased complexity in their architecture. Two key observa-
tions include the exponential decay observed in the RMSE
of the loss function relative to the complexity for the Sim-
pleCNN architectures (as the number of hidden layers in-
creases) and how the more advanced U-net architecture, in-
corporating batch normalization, skip connections, and an
encoder—decoder design, yields the best performance. It is

https://doi.org/10.5194/0s-21-113-2025

worth noting from this experiment that although there is a
clear relationship between the complexity of the CNNs’ ar-
chitectures and the performance obtained, the difference be-
tween them is not too big. The SimpleCNN architecture with
only four hidden CNN layers already approximates the T-SIS
data assimilation package with an RMSE of just 8 mm.

4.3 Ocean percentage

Figure 9 presents the results of the experiment that compares
the percentage of ocean required in the training windows. Re-
call that the goal of this experiment is to investigate how grid
cells with land areas can affect the training of the CNNs —
which is not common in computer vision problems. For this

Ocean Sci., 21, 113-132, 2025
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Figure 8. RMSE comparison between CNN models and the T-SIS method across different architectures on the test dataset.

experiment, the window size is fixed at 160 x 160, the net-
work architecture is the U-net, the SSH increment is used as
the target output, and the SSH background state and satellite
altimeter observations are used as inputs.

Interestingly, we do not identify a clear trend between
the performance of the CNNs and the percentage of ocean
specified in the training examples. These results suggest that
CNN s are not significantly affected by land grid cells when
addressing the problem of data assimilation in ocean models.

4.4 Inputs

Figure 10 presents the results of including additional ob-
servations as input to the models. For this experiment, the
rest of the parameters are as follows: U-net is used as the
network architecture, the entire domain is used to train the
models, and the SSH increment serves as the target output.
The three tested input observations are the satellite altimeter
tracks (SSH), the altimeter tracks combined with SSH and
their corresponding observational errors (SSH, SSH-ERR,
SST, SST-ERR), and the altimeter tracks combined with SST
but without the error information (SSH-SST).

This experiment reveals how the CNN models might ben-
efit from additional observations as inputs. The performance
improves when the error in the observations is included as an
input (as an extra channel in the input layer), and the variance
of the trained models improves when including SST observa-
tion as an input variable. It is expected that the performance
improves by including the observational error because T-SIS
uses it to compute the increment — the error covariance ma-
trix of the observations, R, Uin Eq. (6), contains this infor-
mation. However, it is noteworthy to show that including ad-
ditional SST observations does not affect the model’s perfor-
mance even though we know that SST is not used by T-SIS
to generate the SSH increment.

Ocean Sci., 21, 113-132, 2025

4.5 Outputs

Finally, Fig. 11 presents the results of testing CNNs to simul-
taneously generate multiple data assimilation increments, in
this case, SSH and SST. The rest of the parameters are as
follows: U-net is used as the network architecture, the entire
domain is used to train the models, and the SSH increment
serves as the target output. The three output increments tested
are the satellite altimeter tracks (SSH), sea surface tempera-
ture (SST), and both together (SSH-SST).

For this final experiment, it is important to note that the
y axis is in meters for the first two models, SSH and SSH—
SST, but it is in degrees for the last case of SST. The key
takeaway from this experiment is that the performance in
predicting the SSH increment is not affected when the model
is tasked with generating both increments (SSH and SST)
simultaneously. This indicates the ability of the CNNs to
manage multiple outputs without a significant drop in per-
formance for individual tasks.

4.6 Generalization tests

Following the series of experiments in the previous section,
which provide insights into the performance of CNNs in an
operational ocean model setting with data assimilation, the
best model was selected based on optimal parameters. This
model utilized the U-Net architecture; was trained using the
entire domain of the Gulf of Mexico (GoM) for training ex-
amples; and incorporated the SSH observations, the SSH
observation errors, the SSH background state, and a binary
mask indicating depths greater than 200 m as inputs. The de-
sired output was the increment of SSH, essentially the cor-
rections to be made to this field in the model on a daily basis.

The ability to generate complete assimilated fields from
sparse observations is a fundamental aspect of the data as-
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Figure 10. Comparison of the test RMSE loss by the number and types of input fields.

similation process. By taking advantage of the spatial co-
variance structures and dynamical relationships within the
ocean model, the DA scheme can infer the state of the ocean
in regions without direct observations. Our CNN models
are trained to learn this mapping from inputs (sparse ob-
servations and background state) to outputs (complete incre-
ments), effectively capturing the essence of the DA process
even though the sparse observations are filled with zeros.
Figure 12 illustrates a comparison between the SSH incre-
ment as predicted by T-SIS and the increment predicted by
the CNN model for a specific day, 27 October 2010, from
the test dataset. Generally, the overall predictions are simi-
lar, with the RMSE across the entire domain in this example

https://doi.org/10.5194/0s-21-113-2025

being 3.2 mm. This day was randomly selected to provide a
representative example of the model’s performance in a typ-
ical scenario.

However, the figure also reveals some discrepancies, pri-
marily at the peripheries of areas where there is an incre-
ment. This could potentially be attributed to a hard threshold
within T-SIS that does not provide any increments beyond
a certain distance from the observation. An expected pattern
from Fig. 12 is that the corrections to the model are made
predominantly close to the locations of the satellite tracks.

Figure 13 depicts RMSE for the entire test set, ranging
from 19 October to 31 December 2010, as well as the initial
days of the year used for training. The mean RMSE for the
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Figure 11. RMSE comparison of CNN models by the number and types of output fields, evaluated on the test dataset.

entire test set is 3.72 mm, while for the days used for training
it is 3.51 mm. This suggests that the CNN model is effec-
tively generalizing to unseen examples. However, two points
need to be considered in this analysis:

1. The Gulf of Mexico’s dynamics do not change rapidly
over time. Hence, the dynamical state of the GoM for
the test set might be quite similar to the state used for
training the model.

2. There is a slight discrepancy in the mean RMSE be-
tween the training and test sets, indicating that a more
comprehensive experiment is necessary to understand
how effectively the model generalizes to unseen exam-
ples where the GoM’s dynamical state differs from that
in the training set.

To scrutinize the model’s ability to generalize across dif-
ferent dynamical states of the GoM, 2 contrasting years were
chosen based on the states of the loop current (LC), the key
driver of ocean dynamics in the GoM. Notably, it is challeng-
ing to confidently predict how a trained model will perform
on unseen data. In experiments that use synthetic data, it is
simpler to identify examples that fall outside of the training
distribution, but in this scenario, the process is not as straight-
forward. The assumption is that the CNN model will learn to
assimilate observations in the GoM comparable to the opti-
mal interpolation method in T-SIS and will generalize cor-
rectly to data from different years, regardless of the GoM’s
dynamical state.

The years 2002 and 2006 were selected for this test. In
2002, the LC is primarily in a contracted state, while in 2006,
it is predominantly in an extended state, with some eddies
being shed throughout the year. New assimilated runs of HY-
COM and T-SIS were created for these 2 years as described
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earlier, featuring a 1/25° spatial resolution and using NCEP
CFSR/CFSv2 as the atmospheric forcings.

Figure 14 showcases a day from 2002 and 2006, empha-
sizing the different dynamical states of the GoM for these 2
years.

The RMSE of the proposed model, trained with data from
2009 and 2010, is 4.39 mm for 2002 and 4.22 mm for 2006.
This demonstrates how effectively the model is generaliz-
ing to new data and varying states of the GoM. It is antici-
pated that the model will yield similar results, with an RMSE
around 4 mm, for any other time frame of the GoM. Figure 15
presents the RMSE obtained for every day in 2002 and 2006,
along with the mean for the 2 years. The RMSE has increased
from 3.7 mm in the test set to 4.2 mm in this new general-
ization test. This underscores the importance of identifying
appropriate scenarios to test the generalization of our mod-
els. Specifically, in the context of ocean models, it is crucial
to evaluate the model in different dynamical scenarios than
the ones used for training the models to avoid overestimating
metrics that may not hold up when using the model opera-
tionally.

4.7 Performance comparison

The primary objective of this study is to explore the use of
convolutional neural networks (CNNSs) as a more efficient al-
ternative to traditional data assimilation methods in oceano-
graphic modeling. Comparing the performance between the
proposed CNN model and the traditional T-SIS optimal in-
terpolation method presents several challenges.

The proposed CNN model, still in the prototype stage, as-
similates surface data for a single field at a time and, in some
experiments, two fields. In contrast, the T-SIS data assimila-
tion software is a fully operational package that simultane-
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Figure 14. Contrasting dynamical states of the Gulf of Mexico for years 2002 and 2006. Panel (a) illustrates the retracted loop current on
20 April 2002, while (b) depicts the extended loop current on 20 April 2006. Both cases are representative of the mean dynamical state of

the GoM for that respective year.

ously assimilates all HYCOM fields, including temperature,
sea surface height, velocity fields U and V, and salinity, in
the 41 vertical layers of the model. Furthermore, the T-SIS
package is implemented in FORTRAN and is typically run
on clusters of tens to hundreds of CPUs at high-performance
computing (HPC) centers. Meanwhile, the proposed CNN
model is implemented in TensorFlow with Python and uti-
lizes GPUs, which may contain thousands of smaller proces-
sors.

In this performance analysis, we compare the times taken
by T-SIS to assimilate a single day of observations under
two different settings. The first setting involves execution on
a cluster with 32 processors at the Florida State University
HPC center and the second on the US Navy’s Narwhal su-
percomputer with 96 processors. The proposed CNN model,
assimilating a single surface field (1 d), takes 0.054 £0.005 s
on an NVIDIA Quadro RTX 4500 GPU.

To estimate performance in a full three-dimensional con-
text (assimilating five fields across 41 vertical layers), we
consider two scenarios. The first scenario, labeled CNN se-
quential, assumes no further parallelization, requiring multi-
plication of our observed times by both the number of fields
and vertical levels (41 x 5). The second scenario, CNN par-
allel, assumes complete parallelization in three dimensions.
The potential speedup of the proposed CNN model, com-
pared to the 32-processor T-SIS, ranges from 1.9 to 389.
Against the 96-processor T-SIS configuration, the speedup
ranges from 0.73 (slower) to 150. The speedup or speedup
factor is a unitless measure defined as the ratio of the time
taken by the traditional T-SIS method to the time taken by our
proposed CNN model for the same assimilation task. For ex-
ample, a speedup factor of 58 indicates that the CNN model
performs the assimilation 58 times faster than the T-SIS
method running on a 32-processor cluster, while a speedup
factor of 22 signifies a 22-fold increase in performance com-
pared to the 96-processor T-SIS configuration.

Given the broad range of these results, we simulate the
assimilation of all vertical layers by running our model in
batches of 41, providing a more practical metric. In this sce-
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nario (CNN 41 batch), it takes 0.36 +0.01 s to perform a sin-
gle day’s assimilation, resulting in more realistic expected
speedups of 58 compared to the 32-processor T-SIS and 22
compared to the 96-processor T-SIS.

Table 3 displays the times, in seconds, taken by the T-SIS
package to assimilate 1d of data on an HPC cluster with 32
and 96 processors, along with estimates for times our model
would require, assuming the ability to parallelize only the
vertical layers as a batch and when full parallelization of the
five fields is possible.

5 Conclusions

In this work, we conducted a series of experiments to analyze
the performance of convolutional neural networks (CNNs)
in emulating the data assimilation process within a realistic
operational model setting. These experiments assessed vari-
ous aspects of the CNNs, including architecture complexity,
the types and quantities of observations (inputs), assimilated
fields (outputs), responses to window size, and the influence
of coastline on model performance.

The results demonstrated a clear relationship between the
training window size and performance; larger window sizes
generally result in better results, particularly when the full
domain was used as the training window. Our experiments
incorporating normalized latitude and longitude fields as in-
puts did not yield significant improvements in model per-
formance. There was also a distinct correlation between the
complexity of the CNN architecture and its performance,
with deeper networks achieving superior outcomes and the
U-net-based architectures outperformed other models. Our
initial comparison between simple CNNs and the U-net ar-
chitecture provided valuable insights into the importance of
network complexity and the use of skip connections in cap-
turing the spatial features necessary for accurate data assimi-
lation emulation. Although simple CNNs are less commonly
used in current geoscience applications, this analysis was
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Figure 15. Root mean square error (RMSE) of the proposed CNN model for the years 2002 (a) and 2006 (b). Vertical dashed lines represent
the mean error across each respective year. Date format is year-month-day.

Table 3. Comparison of simulation times for a single day of assimilated observations using T-SIS across various CPU configurations and
the proposed CNN model with multiple estimated parallelization schemes. The bolded times and speedups highlight the most realistic
comparison between our proposed Al implementation and the T-SIS package.

T-SIS 32 processors ~ T-SIS 96 processors  CNN sequential CNN parallel CNN 41 batch
Time 21+0.3s 8.11+0.5s 11.07£0.1s  0.054+0.005s 0.360.015
Speedup vs. 32 processors 1x 2.59x% 1.90x 388.89x 58.33 x
Speedup vs. 96 processors 0.38x% 1x 0.73 % 150.19x 22.53 x

important in demonstrating the necessity of employing ad-
vanced architectures like U-net for such complex tasks.

https://doi.org/10.5194/0s-21-113-2025

Our findings also indicated that even a shallow CNN with
a simple architecture could assimilate SSH observations with
an error margin of only 8 mm compared to the T-SIS assim-
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ilation package. Additionally, experiments assessing the im-
pact of land on ocean models revealed that CNNs remained
robust against land by simply zeroing out these regions, not
affecting the models’ performance based on the percentage
of ocean used in the training data. Moreover, the experi-
ments showcased the CNNs’ ability to efficiently handle ad-
ditional inputs without performance degradation and to as-
similate multiple fields simultaneously. Another important
aspect highlighted through our study is the importance of se-
lecting appropriate test sets to evaluate the generalization ca-
pabilities of deep learning models, particularly when dealing
with realistic ocean models over shorter timescales such as
weeks or months. Using a random selection of training data
as a test set could lead to misleadingly favorable results if the
oceanographic conditions do not change significantly.

Data leakage is a critical issue in machine learning appli-
cations within Earth sciences due to the temporal and spatial
dependencies in the data. Our approach of chronological data
splitting and testing on entirely separate years aims to miti-
gate this concern. To test the generalization of our proposed
model, we utilized data from 2 different years that presented
varied dynamical states of the GoM. Although errors were
slightly higher than with the initial test data (maybe due to
the proximity of the training and test sets), an error of 4 mm
was observed as a typical value when applying our CNN data
assimilation (DA) method, and this is the expected error in
our model in operational systems.

Furthermore, we compared the time performance of a tra-
ditional DA method (optimal interpolation), implemented in
FORTRAN and executed on high-performance computing
clusters, with our proposed CNN method running on a sin-
gle GPU. These comparisons, while challenging, provided
insights into potential time and cost savings achievable with
new technologies. In our tests, the CNN model approximated
the DA optimal interpolation method with less than a 4 mm
error for SSH and achieved potential speedups of up to 58
times compared to systems running on a 32-processor clus-
ter.

Despite ongoing research into explainable Al, which aims
to better understand decisions made by deep learning mod-
els, these techniques typically do not analyze specific perfor-
mance comparisons related to model design decisions. This
work offers insights into the expected behavior of CNNs
when applied to the specific problem of data assimilation
in ocean models. Most findings from the proposed exper-
iments should also be applicable in other scenarios where
CNN models are used for “image-to-image” modeling in
oceanic and atmospheric predictions involving geographic
coordinates and diverse fields.

While our study focused on traditional CNN architectures,
specifically U-nets, we acknowledge that newer deep learn-
ing techniques such as attention-based models (e.g., CBAM
in SmaAt U-nets), vision transformers (ViTs), and denoising
diffusion models have demonstrated superior performance in
various image processing tasks by preserving fine details and
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reducing smoothing effects. Incorporating these advanced ar-
chitectures into ocean data assimilation represents a promis-
ing direction for future research. However, due to computa-
tional constraints and the scope of this study, we did not ex-
plore these models. Future work will aim to investigate these
techniques, leveraging their strengths to further enhance the
accuracy and efficiency of data assimilation in ocean models.

Code and data availability. The source code support-
ing the findings of this study is openly available in
the “da_hycom” repository on GitHub, hosted at https:
//github.com/olmozavala/da_hycom (last access: 22 January 2025)
or https://doi.org/10.5281/zenodo.14714803 (Zavala-Romero et al.,
2025). The repository contains all necessary scripts required for
implementing the models and algorithms discussed in this paper.
Users can download, fork, or contribute to the project under the
terms of the license specified within the repository.

The data used for training the models are available from the
HYCOM (HYbrid Coordinate Ocean Model) website. Interested
readers can access and download the training data by visiting the
HYCOM project page at https://www.hycom.org/data/gombOpt04/
gom-reanalysis (Bozec et al., 2025). For any issues or further in-
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