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ABSTRACT

Two simple numerical models of the shallow-water equations identical in all respects but for their con-
servation properties have been tested regarding their internal mixing processes. The experiments show
that violation of enstrophy conservation results in a spurious accumulation of rotational energy in the
smaller scales, reflected by an unrealistic increase of enstrophy, which ultimately produces a finite rate
of energy dissipation in the zero viscosity limit, thus violating the well-known dynamics of two-dimensional
flow. Further, the experiments show a tendency to equipartition of the kinetic energy of the divergent part
of the flow in the inviscid limit, suggesting the possibility of a divergent energy cascade in the physical
system, as well as a possible influence of the energy mixing on the process of adjustment toward balanced

flow.

1. Introduction

Selecting a finite-difference scheme for the purpose of
solving numerically the equations of atmospheric mo-
tion may involve some arbitrary choices. On the one

hand, simple finite-difference schemes are desirable

from the standpoint of computational economy; how-
ever, the simplest schemes poorly represent most prop-
erties of the original equations. On the other hand, the
closest—but rather complicated—approximation is the
spectral method which is equivalent to a “maximum?”
scheme involving the entire grid. An argument in favor
of simpler finite-difference approximations, however, is
the fact that in many kinds of problems all the proper-
ties of the original equations are not equally important:
one may thus avoid the extreme complication of the
spectral approach, and use simpler schemes only con-
strained to obey the more important requirements.
For instance, if the purpose is short- or extended-time
forecasting, local accuracy will play a prominent role,
calling for higher order approximations in order to
simulate more realistic phase velocities in the larger
scales (e.g., Kreiss and Oliger, 1972), while better dis-
persion properties will be desirable in order to ensure
better efficiency in the smaller scales (Winninghof and
Arakawa, 1970). On the other hand, a very accurate
simulation of the phase velocities of the transient

motions is not essential in long-term general circulation -

experiments (or simulated climate experiments), which
mainly require realistic long-term statistics. The prin-
cipal quality of a finite-difference scheme designed for
this type of problem will lie in its capacity to provide
a correct representation of the nonlinear mixing of
energy within a wide variety of scales. It is clear that
the limitations of the finite-difference formulation can

be counterbalanced by its flexibility and ability to
conform to a restricted number of carefully selected
properties, while remaining simple and computationally
efficient.

The adequacy of a finite-difference scheme to simu-
lated climate experiments will mainly depend on its
ability to reproduce the exchanges of spectral energy
which occur in real flows. Now, atmospheric motion is
essentially two-dimensional, at least for scales greater
than ~100 km. Charney’s (1971) theory of quasi-
geostrophic turbulence as well as reliable observational
studies (Wiin-Nielsen, 1967; Morel and Necco, 1973;
Morel and Larcheveque, 1974) indicate that this quasi-
two-dimensional, quasi-nondivergent motion approxi-
mately follows the laws of two-dimensional turbulence,
Most observational evidence, however, is based on the
shape of the spectral repartition of encrgy—which
results in fact from the underlying structure of the
nonlinear interactions, at least in an inertial range. A
review of most general circulation models using a wide
variety of finite-difference approximations shows that
all these models do produce realistic energy spectra in
the “inertial” range; however, a correct energy spec-
trum for a numerical solution is not by itself a proof
of the accuracy of the simulated energy transfers. In
fact, it is always possible to force the energy distribu-
tion of any numerical solution to conform to a known
spectral shape in the inertial range through ad-hoc as-
sumptions, regarding, for instance, addition of artificial
viscosity. However, if we are to trust numerical model-
ling as a method for providing better understanding of
the real processes, we must then admit that a realistic
energy spectrum should not be forced by artificial tech-
niques, but should come instead as a by-product of the
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first principles only, via correct treatment of the non-
linear interactions. More precisely, accurate long-term
statistical distributions of kinetic energy should result
from:

1) An accurate distribution of sources and sinks
(outside the inertial range).

2) Accurate representation of the statistical transfers
of energy within the resolved scales (“internal” trans-
fers) in spite of the truncation error of the finite-differ-
ence scheme in the smaller scales.

3) An accurate parameterization of the statistical
effects of nonlinear interactions with the subgrid-scale
motions.

The fact that the atmospheric flow is quasi-two-
dimensional is of uppermost importance in designing a
finite-difference scheme suitable for very long-term
integrations (Arakawa, 1966, 1970), since the spectral
transfers of energy in two and three dimensions exhibit
quite different structures. Dimensionality is not directly
in question, but we are concerned with the existence of
an additional invariant, enstrophy or potential ens-
trophy, in two dimensions. At least in the nondivergent
case global conservation of the quadratic invariants is
essential for the regulation of the nonlinear energy
transfers, since conservation as a whole is equivalent
to “local” conservation within a triad of wavevectors.
Recognition of the peculiar dynamical effects of ens-
trophy conservation is an essential feature of the theory
of turbulence in two dimensions, while its effects on the

transfers of energy within a triad have long been,

recognized by Fjortoft (1953). Tt is clear that exact
conservation of total enstrophy in the finite-difference
formulation will play a central role in the ability of the
model to represent correctly the exchanges of energy
between modes.! In fact, the problem with finite dif-
ferencing, as opposed to spectral methods, lies in the
fact that truncation error in the smaller scales reaches
a magnitude of the order of the derivative itself, so that
the structure of a triad interaction involving smaller
scales is poorly related to its characteristic structure in
the exact equations, depending instead on the intrinsic
conservation properties of the finite-difference scheme.
Although in the larger scales an increase of accuracy
will lead to more realistic energy exchanges in the
absence of formal conservation, even these scales may
be eventually contaminated by erroneous mixing of
energy originating in higher wavenumbers.

The long-term statistical properties of the numerical
solutions resulting from a finite-difference model con-
strained to the correct conservation properties should
thus be equivalent to those of a spectral model of
equivalent resolution. However, both will be limited to
a finite number of degrees of freedom, which will

! The importance of conforming to the formal invariants while
departing from the exact Navier Stokes equations is also a charac-
teristic feature of the theory of stochastic models of turbulent
flows (Kraichnan, 1971; Frisch et al., 1974).
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produce a distortion of the long-term statistics if an
accurate parameterization of the statistical effect of
the subgrid-scale motion is not included in the formula-
tion. The problem here is that such a parameterization,
ideally based on the first principles only, is not yet
available. However, a comparison of finite-difference
schemes regarding their internal mixing properties can
be made without reference to the unresolved scales.
Further, the mechanisms of the nonlinear exchanges of
energy are best described by inviscid calculations. In
the nondivergent case, for instance, the statistical
properties of inviscid numerical models are now well
known from both theoretical and experimental view-
points (Foxand Orszag, 1973 ; Basdevant and Sadourny,
1975). These studies may provide a useful frame of
reference for the study of more complicated models.

The purpose of the present paper is to analyze the
importance of potential enstrophy conservation in
finite-difference models of the shallow water equations,
regarding their internal mixing processes: the experi-
ments were performed in the inviscid limit, without
energy sources. They could have included various
classical schemes, but it looked perhaps more convinc-
ing to compare two simple schemes especially designed
to be almost identical but for their conservation proper-
ties. The integrations were performed on a plane using
doubly periodic boundary conditions; due to this some-
what abstract setting, the Corlolis parameter was
taken equal to zero. The dynamics of more realistic
motions on a rotating sphere will be the subject of a
forthcoming paper.

2. Two simple finite-difference models of the
shallow-water equations

Let us take the shallow water equations in the form

oV
B———}—nNX(PV) +grad(P4+1V-V)=0
i

D
aP
—+div(PV)=0
at

where V is the (two-dimensional) velocity vector, P
the (two-dimensional) density or pressure, 4 the poten-
tial vorticity, i.e.,

rotV

)

P

and N the unit vector normal to the plane domain .S,
chosen as a square with periodic boundary conditions
in both directions. The scale of the domain is somewhat
arbitrary; consequently, the influence of an entrain-
ment rotation is omitted, in order to avoid an arbitrary
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u p , div u operators:
T g 1 d d
8:0(%,y) = q(x+5, y) —q<x—5, y)]
rot rot =
v o v o vi - p p
8,q(x,y) = <;<x, y+§)—q<x, y~~)}
U pldvu = 2
- — 4 o ir d d
g (x,y)=- q<»+-1 y>+q<x——, y)]
2L 2
—y 1r d d
g (%)=~ q(x,y+~>+q<x,y——>}
2L\ 2 2

I'16. 1. Staggered arrays for the finite-difference models.

choice for the magnitude of the entrainment vorticity
f. Only the slightly compressible case is considered,
where divergence is small compared to vorticity. As
usual, this relatively vague assumption is replaced by
a balance condition for the initial fields:

div¥=0

Jd
—div¥=0
a

Among the formal properties of (1), one notices the
existence of three positive invariant forms:

M=/ PdS
s

Total mass

Total energy
E=/ 1(PAV-V)P4S
3

Absolute potential enstrophy

Z= / $72PdS.
8

The importance of potential enstrophy conservation
in the finite-difference formulation will be tested by
considering two models almost identical but for this
particular constraint. The grid disposition shown in
Fig. 1 allows better dispersion properties and avoids
two-grid interval noise. Together with this grid, one
may choose the simplest derivation and averaging

The mass fluxes U and V are defined at the points
where the velocity components # and v are located:

U=1—’Iu }
. —Y
V=P

The gradient operator will act on a quantity H defined
at the locations where pressure is defined:

H= P +v7).

Potential vorticity is located at the mesh centers and

defined as

80— 8yU

n=——
bt

-

P

Simple expressions are chosen for total mass, energy
and absolute potential enstrophy:

M= Z JP
E=1Y (P*+Pu? +Pu)

-y
= J
Z=32. 7P
the symbol Y referring to a summation over all grid -
points of a same species. Note that the derivation
operators 8., 8, are skew-symmetric linear operators,

and further, that the averaging operators (7,7%) are
symmetric linear operators, i.e.,

> ab = > ba }
S abb=—3 bo.al

It follows, for instance, that the time derivative of
total energy reads

dE ou dv P
—=3 <U——+ V—~+H———). (2)
dt ot at ot
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A simple energy-conserving model can be defined as

u __Z 3
——qV +46.H=0
ot

v —::

—+nU o, =0 3)

opP
~—+6.U+4+6,V=0
ot

J

so that from (2) we have

T b

+3 (VaU —UnV)

D

dt
+ > (Us H+HS,.U)
+ > (Vs,H+Hs,V)=0,

where each of the three summations cancel due to the
symmetry or skew symmetry properties of the operators.

On the other hand, a simple potential-enstrophy-
conserving model reads

-y

oy )
——n V 46,H=0

at

dv _I:z

—tn U +5,H=0,. €))
at

P

—+8,U+68,V=0

at

J

In the corresponding vorticity equation, the discrete
gradient vanishes (6,9,=6,8,), so that

—u —z —v

6 — —F —} -y —Z
—P)Fon Uy +8,(n V=0,

which, when combined with the averaged continuity
equation

-y bt d —Y

a —z —y —x

vields the conservative potential enstrophy equation

-y ~—z —y

(9 —x ~?:—y ~Y —=x
52(’721) )60 U )+8,(n* V )=0,

where the tilde in lieu of an overbar means a geometric,
instead of an arithmetic, average. We may notice that
(4) does not conserve energy except in the case of pure
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rotational motion {(y=0). At this stage of simplicity,
conservation of energy and conservation of potential
enstrophy are conflicting requirements. Egs. (3) and
(4) thus provide two quite similar numerical schemes
based on the same staggered disposition of the same
basic variables, differing only in the space averaging
procedure for the rotation term. Eq. (3) conserves
energy exactly but not potential enstrophy, while Eq.
(4) conserves potential enstrophy exactly but not
energy.

3. Nonlinear instability and energy catastrophe

The analysis of the long-range behavior of numerical
models raises first the question of nonlinear instability.
In the present experiments, the partial derivatives
with respect to time were approximated by the well
known “leapfrog’ (three-level centered) scheme, in
order to minimize dissipation. However, the slight in-
stability inherent to this approximation necessitates
some damping procedure; thus, the odd- and even-time
solutions were averaged every N steps, l.e.,

gLV DAL= 3{glV A+l (V+ DA},
gLV —2)Ar]=3{qL(V 1A H-¢[.VAL]},

then starting afresh from the averaged fields on the
left-hand side. This method amounts to a damping in
higher frequencies mostly. The averaging frequency
v=1/N can be considered a measure of the dissipativity
of the time-differencing.

At first sight, energy conservation can be expected
to act as a stronger constraint than potential enstrophy
conservation as far as nonlinear instability is con-
cerned. In fact, instability would not occur if energy
was exactly conserved in time, since all physical pa-
rameters are necessarily bounded as soon as energy is
bounded. On the contrary, exact conservation of poten-
tial enstrophy in time does not necessarily mean un-
conditional stability of the solution, since it cannot
prevent possible instabilities in the divergent part of
the flow. Nevertheless, in the case of the nondissipative
leapfrog scheme (v=0) where both models are un-
stable, the invariants being not exactly conserved in
time, the potential-enstrophy-conserving model was
found more stable than its competitor, in the sense that
instability occurred later for the same initial conditions.
Concurrently, the energy in the divergent field re-
mained small at all times.

Adding dissipativity to the models (»>0) does not
vield any drastic change in the evolution of the solution
(only random fluctuations of the time of occurrence of
instability around an average value, referred to as the
“critical” time T,) until » reaches a critical value »,. A
slightly overcritical dissipativity »2> v, stabilizes the
solution far beyond T, practically for an infinite time.
The stability properties of both models are summarized
in the stability diagrams shown in Fig. 2. The potential
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T1c. 2. Stability diagrams for the potential-enstrophy-conserv-
ing model (A) and the energy-conserving model (B), showing the
time of occurrence of instability 7T as a function of the damping
frequency . )

enstrophy-conserving model is significantly more stable
then the energy-conserving model: not only is its
critical time larger, but its critical dissipativity is an
order of magnitude smaller. Ideally, the analysis of the
internal mixing properties of each model should be
performed in the purely inviscid case; however, the
instability inherent to the leapfrog scheme makes this
ideal situation impractical. The slightly overcritical
case (v v.), where dissipativity is just large enough to

control nonlinear instability, is the best practical ap- -

proximation of the vanishing dissipation case. All ex-
periments reported from now on have been performed
around the critical dissipativity limit.

The simpler long-term statistics deal with the evolu-
tion of the two main invariants. The potential enstrophy
Z is not exactly conserved by the energy-conserving
" space differencing scheme. However, this model is an
approximation of a system of equations which con-
serves Z exactly, so that, if one starts from sufficiently
smooth initial conditions, Z remains stationary for a
while. This stationarity approximately holds for :<<T;
a net production of potential enstrophy is observed
later on, at a rate increasing with time. This increase
of enstrophy apparently triggers nonlinear instability
in the energy-conserving model. Looking at energy
only, one would not be able to predict the occurrence
of instability: in fact, energy remains very stable,
contrary to enstrophy, and blows up suddenly at ¢=T..
This sharp increase of enstrophy while energy remains
stationary in the close vicinity of the critical time
reflects the fact that the unstable modes are to be found
in the smaller scales. If dissipativity is slightly over-
critical, the increase of enstrophy occurs in the same
manner, but stops suddenly at {= T ; thus, Z culminates
at a value z. independent of ». Energy dissipation is
negligible as long as the critical time is not reached.
The time /=17, marks the beginning of a different
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regime; as potential enstrophy levels off, a strong dissi-
pation of energy—an energy ‘‘catastrophe’”—occurs
suddenly (Fig. 3).

There is some analogy between the energy-conserving
model and the Navier Stokes equations in three dimen-
sions. The theory of three-dimensional turbulence
shows that, if the initial fields are sufficiently smooth—
in the sense that the initial enstrophy Z is finite—then
the nonlinear interactions force a net production of
enstrophy by transferring energy to the smaller scales.
And the transfer is such that, in the inviscid limit,
enstrophy reaches infinity after a finite time T'~Zo %
If » here is the viscosity coefficient, one may show that
in the limit » — 0, energy is exactly conserved as long
as the critical time is not reached. On the other hand,
the rate of energy dissipation for {> T is independent
of v. The critical time is the time of establishment of
an energy cascade which produces a finite rate of energy
dissipation even in the zero viscosity limit (Brissaud
et al., 1973). In the two-dimensional energy-conserving
model, the rate of énergy dissipation for > T, is also
remarkably insensitive to the value of the dissipativity
coefficient as long as it stays within an order of mag-
nitude above its critical value.

1.001

Fic. 3. Time evolution of potential enstrophy (Z) and energy
(e) in the case of the energy-conserving model, using quasi-critical
dissipativity : »=0.01 (case A, where instability occurs), »=0.02
(case B), »=0,005 (case C).
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I'rc. 4. Time evolution of potential enstrophy (Z) and energy
(¢) in the case of the energy-conserving model showing the in-
fluence of resolution: case A, 16X 16 grid; case B, 32X32 grid
(same initial conditions).

The analogy is by no means complete. If the modes
initially excited belong to the larger scales of the model,
potential enstrophy is quasi-conserved during a tran-
sient stage (<<T7). This shows in fact that the non-
linear exchanges of energy exhibit a quasi-two-dimen-
sional structure as long as there is no significant excita-
tion in the smaller scales. In other words, during this
stage of the evolution, the nonlinear mixing of energy
is mainly governed by the approximation properties.
Increasing the accuracy in the larger scales by decreas-
ing the mesh size delays the critical time and lengthens
the period of time during which potential enstrophy
remains almost stationary (Fig. 4). However, there is
a slow buildup of energy in the smaller scales, which
eventually produces a distortion of the nonlinear mix-
ing. The triad interactions in the smaller scales are far
from accurate, their structure being essentially governed
by the intrinsic conservation properties of the finite-
difference scheme; they produce three-dimension-like
energy exchanges in the absence of formal enstrophy
conservation. This effect of the smaller scales gets
more and more pronounced as time goes on, and be-
comes predominant in the vicinity of the critical time,
accounting for the enstrophy increase and the subse-
quent catastrophic dissipation of energy, reflecting the
damping of the unstable modes.
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A main characteristic of the energy-conserving model
is its compulsion to dissipate energy. In the case of
minimum (critical) dissipativity, energy is dissipated
via the occurrence of a catastrophe at the critical time.
Catastrophic energy dissipation—and the correspond-
ing unrealistic increase of potential enstrophy-—can be
avoided by using higher values of dissipativity (»>>v.)
or by including artificial viscosity. In one way or
another, energy dissipation will occur. However, as-
suming the motion is quasi-nondivergent and trunca-
tion occurs within a two-dimensional inertial range,
any removal of rotational energy from the explicit
scales is somewhat unrealistic; in two-dimensional
turbulence, energy does not cascade through the inertial
range into the dissipation range. The compulsion to
energy dissipation is a pathological feature of the
energy-conserving model due to the unrealistic mixing
of energy in the smaller scales, and not related to the
absence of subgrid-scale parameterization.

The behavior of the potential-enstrophy-conserving
model is drastically different. An obvious defect of this
very simple model is the lack of formal energy con-
servation by the rotation term. At the beginning of
the integrations one may notice a very short transient
phase during which energy decreases and adjusts to

+-0.98

F1c. 5. Time evolution of potential enstrophy (Z) and energy
(e) in the case of the potential-enstrophy-conserving model:
case A, »=0.0025; case B, »=0.001; case C, »=0.00055,
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some equilibrium value, remaining remarkably sta-
tionary afterward (Fig. 5). This initial loss of energy
becomes extremely small as the grid size is reduced. As
already noticed, nonlinear instability in this model is
cured by a very small critical dissipativity. Contrary
to what happens in the case of the energy-conserving
"model, instabilities develop among the intermediate
scales, instabilities which are not related to a buildup
of higher order moments of the spectral distribution of
energy E(k). For instance, the fourth-order moment
Y K‘E(k) remains approximately stationary as insta-
bility begins to develop. Consequently, energy dissipa-
tion is extremely small when dissipativity is slightly
overcritical, and there is not even an enstrophy catas-
trophe at the critical time, although enstrophy dissipa-
tion is more pronounced than energy dissipation (Fig.
5). The potential enstrophy-conserving model thus
allows very long term integrations with negligible loss
of energy in the explicit scales, in agreement with the
theory of two-dimensional turbulence. Further, ens-
trophy conservation prevents any buildup of energy in
the smaller scales: most of the energy remains in the
larger scales, where good accuracy makes the necessity
of formal energy conservation less stringent.

4. Equilibrium spectra

More detailed statistics may be obtained in spectral
space. Splitting the velocity field into its rotational and
divergent parts V, and Vg, and computing the Fourier
transforms of P, V., Vg at every time step », the long-
range behavior of the model flows (in terms of spectral
distributions of energy) may be analyzed by evaluating
- the time averages

1w~
ER(k)= ‘lvl‘rg IV- Zl V.2(kn),

1~
ED() = lim — 3 Varlhn),

n=1

1~
EP(k)= gm ~ > Pk,n).

2% N p=1

If we assume that truncated systems are ergodic, these
expressions, computed on a single solution, are equiva-
lent to the corresponding statistical ensemble averages.
EP (k) is indeed the expected spectral distribution of
potential energy, and ER(k) and ED (k) are the ex-
pected spectral distributions of rotational and divergent
energy per unit mass. Theoretical expressions for ex-
pectations of this kind have been calculated for trun-
cated incompressible model flows. In this case the
related invariants, being quadratic, are easily expressed
in Fourier space; the form of the equilibrium spectra
is derived from macrocanonical ensemble averages (Fox
and Orszag, 1973), or from microcanonical ensemble
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averages (Basdevant and Sadourny, 1975). The ergodic
hypothesis is well verified by numerical experiments,
which yield equilibrium spectra in excellent agreement
with the theory. In the case of the shallow water
equations, however, the derivation of similar theories
would be considerably more involved, and one has to
rely on experimental results.

It is customary to define the energy distribution as a
one-dimensional energy spectrum E(k), k= | k|. In the
finite-difference case, however, a more convenient vari-
able is the pseudo wavenumber

2 kad fyd
K= *<sin2 +sip2—)
d 2 2

e

related to the eigenvalues of the finite-difference
Laplacian:

—_ K2eik~X;= (512_‘_ 5v2)eik~x.

Therefore, all energy spectra will be considered as
functions of K, with EP(K), ED(K), ER(K) referring
to averaged energies in any vector mode k correspond-
ing to K.

The spectral analysis shows that the critical time of
the energy conserving model is the time needed by the
nonlinear interactions to produce approximate equi-
partition of rotational energy between all Fourier
modes. Assuming that divergent energy is zero initially
and remains small, the value z. at which enstrophy
levels off is thus entirely determined by the initial
kinetic energy (Eq) and the number of grid points (#?).
A simple estimate based on equipartition is

2o~ %2E()

in good accordance with simulation results (Fig. 4).
When resolution in both directions is doubled, the
value at which potential enstrophy culminates is multi-
plied by a factor of 4. Smooth equipartitions of ER (K)
are obtained when the model is integrated long enough
(Fig. 6), looking quite similar to those observed in
inviscid models of the Navier Stokes equations in three
dimensions. The tendency toward equipartition of ro-
tational energy is a more detailed illustration of the net
energy transfer from lower to higher wavenumbers
induced by the inaccurate structure of the nonlinear
interactions in the smaller scales.

The potential-enstrophy-conserving model produces
equilibrium spectra of a different kind. The long-range
averaged distributions of rotational energy are char-
acterized by an equipartition of enstrophy among
higher wavenumbers [ER (K)~ K~%], the shape of the
spectrum in lower wavenumbers depending on initial
conditions and containing most of the energy (Fig. 7).
The small amount of energy reaching the smaller scales
of the model, together with the low value of critical
dissipativity »., account for the quasi-absence of energy
dissipation in the slightly overcritical case. At least in
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F16. 6. Equilibrium energy spectra in the case of the quasi-
inviscid energy-conserving model, showing average energy per
vector mode as a function of the pseudo-wavenumber K. Z: rota-
tional energy, d: divergent energv. Dashed lines indicate corre-
sponding spectra in the case of the potential-enstrophy-conserving
model, using the same value of dissipativity (»=0.0035). Both
coordinates are logarithmic.

the case of initially balanced fields, the shape of ER(K)
is quite similar to what obtains in two-dimensional
(enstrophy conserving) nondivergent model flows. This
would mean that the interactions between the divergent
and rotational parts of the velocity field have little
effect on the long-term statistics of the rotational part.
Extrapolating this property to the nontruncated equa-
tions, one can say that the rotational effect of the
subgrid scales in a truncated model of the shallow-
water equations should take the same form as in the
nondivergent case—an accurate, energy-conserving pa-
rameterization of the enstrophy transfer toward the
smaller scales.

There is no drastic change in the shape of the diver-
gent energy distribution ED (K) as one goes from the
energy-conserving model to the potential-enstrophy-
conserving model: as already noticed, the two models
are identical in the case of pure divergent flow. The
lower level of divergent energy in the first case can be
explained by the higher value of critical dissipativity
v, (the time averaging procedure damping high fre-
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quencies, such as gravity waves, mostly). In the case
of the potential-enstrophy-conserving model, where the
distribution of rotational energy is more accurate, we
observe a good correlation between ED (K) and ER(K)
in the lower end of the spectrum; ED(K) is approxi-
mately an order of magnitude below ER(K), which
shows that the flow approximately remains in a state
of balance, as far as the larger scales are concerned. On
the other hand, there is a definite tendency toward an
equipartition of divergent energy in the smaller scales
where balance is no longer maintained due to the sharp
decrease of rotational energy. In general, an equiparti-
tion in an inviscid truncated flow corresponds to a
cascade in the original nontruncated system; if one
refers to the well-known nondivergent case, truncation
in two dimensions produces equipartitions of enstrophy
in higher wavenumbers instead of enstrophy cascades,
while truncation in three dimensions produces equi-
partitions of energy instead of energy cascades. Pro-
ceeding by analogy, one may conjecture that in non-
truncated shallow-water flow, divergent energy does
cascade into smaller and smaller scales, until it reaches
the dissipation range.

u(K)
L, .
y N /L
- 0.1 \\
\'\
° ~
o \..
d
>
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Fic. 7. Equilibrium energy spectra in the case of the quasi-
inviscid potential-enstrophy-conserving model, showing equiparti-
tion of enstrophy and divergent energy in higher wavenumbers.
Same conventions as in Fig. 7.
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Let us imagine that an unbalanced perturbation at
wavenumber % is added at an arbitrary time to the
system which produces the equilibrium spectra shown
in Fig. 7. If the energy of the perturbation is small
enough, it will not perturb the long-term averaged
distributions. The ratio

a(k)=ER(K)/ED (K)

is thus a measure of the adjustment capability of the
model flow to an unbalanced perturbation at wave-
number . If the scale of the perturbation is small, the
mechanism of this adjustment to balance is similar to
a geostrophic adjustment (although less efficient), since
the rotational motion in the larger scales yields an
entrainment effect on the perturbation, similar to a
Coriolis acceleration. It is clear from Fig. 7 that there
can be no real adjustment in higher wavenumbers,
where the flow will return to a statistical state of un-
balance [a(k)<1], due to the nonlinear effect of diver-
gent energy equipartition. This behavior does not
contradict the linear theory by Cahn (1943) "and
Obukhov (1949), which calls for an infinite domain
over all of which gravity wave energy may eventually
disperse. It is not clear to which point adjustment
occurs on a bounded domain (with zero outgoing fluxes
or periodic boundary conditions) for the exact equa-
tions, as we do not know typical magnitudes of the ratio
a(k) for real flows. The existence of a divergent energy
cascade would produce a better adjustment, however,
than that found in the inviscid truncated flow, by
draining away the divergent energy which the trunca-
tion forces to accumulate.

The lack of correlation between rotational and dlver-
gent equilibrium spectra in the smaller scales of the
model, as well as the different structure of nonlinear
interactions in the divergent and rotational fields, call
for separate parameterization of the rotational and
divergent subgrid-scale motions.

The rotational part must be treated as in two-
dimensional nondivergent flows. A possible method is
Leith’s (1968) early nonlinear viscosity approach
which, however, leads to nonvanishing energy dissipa-
tion—although the nonlinear character strongly en-
hances enstrophy dissipation as compared to energy
dissipation. Since the effect of the subgrid scales is to
provide a net enstrophy transfer at the truncation,
without dissipation of energy, the parameterization
must essentially remove energy in the smaller scales
and redistribute it in the middle scales of the model,
where it should be slightly amplifying A simple way of
obtaining an effect of this sort is the adjunction of a
linear term

oV

6—-!—- «+=pp(NXgrad rot)(—a—NXgrad rot) V,
¢

which acts on the rotational field only. The differential
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operators can be approximated in finite-difference form.
The intensity of the simulated enstrophy transfer at
the truncation is modulated through the choice of a
coefficient vg, while >0 is chosen in order to recover
a vanishing dissipation of energy: in other words, o
has to be chosen as the maximum value which provides
stability of the whole system, i.e., the value for which
amplification in the middle scales is exactly balanced
by the dynamical effects. Rotational energy is thus
only redistributed in the spectrum, as in Leith’s (1972)
more accurate spectral method. However, a simple
scheme of this kind is no more than one ad hoc linear
technique among many others, in the absence of
better grounded statistical theories.

On the other hand, a parameterization of the diver-
gent energy cascade is necessary in order to recover
more accurate spectral distributions for the divergent
energy, and, consequently, better adjustment to balance
in the smaller scales of the model. The formulation here
should be closer to Smagorinsky’s original method
(Smagorinsky et al., 1963), using a kind of nonlinear
viscosity approach. More simply, a linear scheme such
as

—++ .=+ Fyp grad divV

gives acceptable results (Sadourny, 1972), and has been
applied successfully in four-dimensional assimilation
experiments, where quick adjustment to balance in the
smaller scales is of uppermost importance (Morel and
Talagrand, 1974).

5. Conclusion

The truncation error of a finite-difference approxi-
mation in the smaller scales is so large that the non-
linear interactions involving spectral modes in the
vicinity of truncation are no longer related to the
exact equations, but are dependent on the space. dif-
ferencing only. The absence of formal conservation of
potential enstrophy in the two-dimensional energy-
conserving model thus yields a net transfer of rota-
tional energy toward higher wavenumbers, as if the
flow were indeed three-dimensional. This energy cas-
cade is such that spurious dissipation of energy is un-
avoidable, taking the form of a sudden catastrophe in
the critical dissipativity limit (quasi-inviscid case).
An accurate parameterization of the subgrid-scale
effects on the rotational field cannot solve this problem
in any manner, since the transfer of rotational energy
through truncation should vanish according to the
theory of two-dimensional turbulence. Conservation of
potential enstrophy in the nonlinear interactions in-
volving triads of internal wavenumbers is thus an essen-
tial requirement for long-term numerical integrations.
The fact that the equilibrium spectra of rotational
energy in the case of the potential-enstrophy-conserving
model are quite similar to equilibrium spectra ob-
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tained in the pure non-divergent case would mean that
the original Arakawa scheme which does not conserve
potential enstrophy but conserves enstrophy in the
case of vanishing divergence) should give equivalent
results.

The equipartitions of enstrophy and divergent energy
in the smaller scales observed in quasi-inviscid calcula-
tions should lead to the conclusion that the dynamics
of the exact shallow-water equations involve a divergent
energy cascade as well as an enstrophy cascade toward
the dissipation range. If so, the subgrid-scale param-
eterization should be split into a rotational part simu-
lating an enstrophy transfer at the truncation without
dissipation of rotational energy, and a divergent part
accounting for a divergent energy transfer. The latter
should have the effect of providing a more realistic
adjustment to balance in the smaller scales of the
model, by preventing an accumulation of divergent
energy. In the case of three-dimensional atmospheric
flow, however, the relative importance of nonlinear
effects as opposed to linear dispersion of gravity waves
into outer space may be small, except for the Lamb
wave which does not propagate vertically.
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