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ABSTRACT

To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily
small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy
is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous).
Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential
vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the

free surface may intersect with the lower boundary.

1. Introduction

As Arakawa (1966 ) showed, we can construct finite-
difference Jacobians that maintain important integral
constraints on the continuous Jacobian. When applied
to the vorticity equation governing two-dimensional
incompressible inviscid flow, maintaining these con-
straints guarantees conservation of energy and enstro-
phy in the discrete system. Arakawa (1970) and Ar-
akawa and Lamb (1977) further pointed out that in
long-term integrations with energy conserving (but not
enstrophy conserving) schemes, enstrophy increases
considerably due to spurious energy cascade into
smaller scales. On the other hand, enstrophy conserving
(but not energy conserving) schemes approximately
conserve energy. This is reasonable because the amount
of energy in smaller scales, where discretization errors
are large, is effectively constrained by enstrophy con-
servation,

Similar situations exist in finite-difference schemes
for the shallow water equations, as Sadourney (1975)
pointed out. Based on the vector-invariant form of the
shallow water equations without Coriolis force, he pre-
sented two schemes, one conserves energy and the other
conserves potential enstrophy. He then showed that
the energy conserving scheme produces an unrealistic
increase of potential enstrophy, while the potential-
enstrophy conserving scheme prevents any build up of
energy in smaller scales.
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Compared to enstrophy conservation, therefore, en-
ergy conservation appears to be a less effective com-
putational constraint on the nonlinear (potential ) vor-
ticity advection term. Energy conservation, however,
can be a very important constraint on some other
terms, such as the Coriolis force term. A scheme for
the shallow water equation (with the Coriolis force)
that conserves both energy and (absolute) potential
enstrophy when the mass flux is nondivergent was de-
rived by Sadourney and tested by the ECMWF (Bur-
ridge and Haseler 1977; see also Hollingsworth et al.
1983). Arakawa and Lamb (1981) derived a scheme
that conserves both potential enstrophy and energy for
the general case of divergent mass flux. Arakawa and
Lamb also derived a family of schemes that satisfy the
same conservation requirements when the mass flux
is nondivergent. Takano and Wurtele (1982 ) extended
the Arakawa-Lamb scheme to a partially fourth-order
potential-enstrophy and energy conserving scheme.

In a real fluid, however, both energy and potential
enstrophy can cascade into smaller scales and even-
tually dissipate. Dynamical processes responsible for
energy cascade and those for potential enstrophy cas-
cade, however, can be quite different. In quasi-geo-
strophic turbulence, for example, it is primarily the
potential enstrophy not the energy that cascades into
smaller scales and eventually dissipates. (For excellent
reviews of quasi-geostrophic turbulence, see Sadourney
1984, 1985).

In this paper, we first derive a family of finite-dif-
ference schemes for the shallow water equations with
which potential enstrophy is guaranteed to be either
conserved or decreased in time while energy is con-
served (when the mass flux is nondivergent and time
is continuous). With these schemes, potential enstro-
phy dissipation can be incorporated with no or arbi-
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trarily small energy dissipation. The amount of poten-
tial enstrophy decrease is controlled by a time scale,
which can be specified through physical reasoning. The
result is a generalization of Arakawa (1966) and Ar-
akawa and Lamb (1981) to a (potential) enstrophy
dissipative system. It can also be interpreted as an ap-
plication of the simplest version of the “anticipated
potential vorticity method” (Sadourny and Basdevant
1985) to a discrete system.

When the free surface can intersect with the bottom
surface, the discrete continuity equation must be pos-
itive definite. Also, special care must be taken in
choosing a scheme from the family of schemes we have
derived. In these schemes, products of potential vor-
ticity and mass flux at different grid points appear in
the momentum equation. These products do not nec-
essarily remain finite as the fluid depth at the neigh-
boring grid points approaches zero. To avoid this sit-
uation, we choose a unique member from the family,
with which the spurious impact of infinite potential
vorticity associated with infinitesimal fluid depth is
minimized.

In section 2, the continuous shallow water equations
and some of their consequences are reviewed. Section
3 (along with appendix A) presents an energy con-
serving and potential-enstrophy dissipating scheme for
the general case of divergent mass flux, while section
4 (along with appendix B) presents a family of energy
conserving and potential-enstrophy dissipating schemes
for the case of nondivergent mass flux. Section 5 dis-
cusses requirements for minimizing the spurious im-
pact of infinite potential vorticities and shows that a
unique member of the family can satisfy these require-
ments. Finally, section 6 gives a summary of this paper
and further comments.

2. Continuous equations

The governing equations for quasi-static motions in
a homogeneous incompressible fluid with a free surface
(shallow water equations) can be written as

av

o TEXVAVK+®) =0, (21)
oh
— 4 V.v* =0, .
» V¥ =0 (2.2)

Here v is the horizontal velocity, ¢ the time, g = (f
+ {)/h the potential vorticity, fthe Coriolis parameter,
¢ = k-V X v the relative vorticity, 4 the depth of a
fluid column above the bottom surface, k the vertical
unit vector, v* = hv the horizontal mass flux, V the
horizontal del operator, K = v2/2 the horizontal kinetic
energy per unit mass, ® = g(4 + h;) the geopotential
at the free surface, g the gravitational acceleration and
h, the height of the bottom surface.

Multiplying (2.1) by v* and using (2.2), we obtain
the equation for the time change of kinetic energy,
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d
5 (hK) + V- (v*K) + v*.V® = 0. (2.3)
Multiplying (2.2) by ®, on the other hand, we obtain

the equation for the time change of potential energy,

ot

The sum of (2.3) and (2.4) yields conservation of total
energy,

9 [%ghz + ghhs} + V- (v*®) —v*.Vd =0. (2.4)

d 1
% [h(K+§gh+ghs)] =0, (2.5)
where the overbar denotes the area mean over a peri-
odic domain or a domain with no inflow or outflow
through the boundaries.

Operating k- VX on (2.1), we obtain the vorticity
equation that is equivalent to the flux form of the po-

tential vorticity equation given by

0
a~t(hq)+V-(v*q)=O. (2.6)
Subtracting (2.2) times g from (2.6), we obtain
dq
— -Vg = 2.7
o TV Ve 0, (2.7)

that is the advective form of the potential vorticity
equation. In the case of nondivergent mass flux, for
which V.v* = 0 (and dh/dt = 0), we can define a
streamfunction ¢* for the mass flux by

v¥ =k X Vy* (2.8)

Then, using Cartesian coordinates x and y, we can
express (2.6) as

d
% (hg) + J(¥*, q) = 0, (2.9)
where J is the Jacobian defined by
da db dadb
J(a’b)=£c@_5;$c' (2.10)

Multiplying (2.7) by Aq and using (2.2), we obtain
the potential enstrophy equation
a(, 1, 1
— | h= Ve lv*¥=¢g?|= .
at(hzq)+ (v 2q) 0 (2.11)

that leads to conservation of potential enstrophy

] 1
—|hzg*|=0.
ot ( 21 )
In this paper, we are interested in including a dis-
sipative effect on potential enstrophy while conserving

energy. To do so, let us replace g in (2.1) by g + ¢'.
Obviously this does not influence (2.5), therefore, en-

(2.12)
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ergy is still conserved. Equation (2.11), however, is
modified to

i) 1, *l 2
ét(hzq )+V (v 2q

= —V.(gv*q')+ gv*-Vg. (2.13)
If we choose

q'=—(7/h)(v*-Vg), (2.14)

where 7 is a time scale to be specified, (2.13) gives

ﬁ l 2y - _ T *, 2
az(hzq) h(v Vq)3. (2.15)

Thus, the potential enstrophy is conserved with r = 0
and decreases in time with 7 > 0. The choice of ¢’ given
by (2.14) is a simple example of the anticipated po-
tential vorticity method proposed by Sadourny and
Basdevant (1985).

3. An energy conserving and potential-enstrophy dis-
sipating scheme for the general case of divergent
mass flux

Using the C grid (Arakawa and Lamb 1977) shown
by Fig. 1, a space finite-difference scheme for the con-
tinuity equation (2.2) can be written as

d
Ey hivijajri2  (Vov®)igin 2 =0, (3.1)
where
1
(V’V*)i+1/2,j+1/2 = ;1' [u?+l,j+l/2 - u?,‘j+l/2
+0h2,0 — V2], (32)
. q v q v q
J+| -
j+-'- "u oh ol oh oU
q v q vV q
J . 2 .
j-L U .h U .h IC
. q v q Vv q
=1 *
i-l i-4 i i+3 i+l
d —_-

FIG. 1. The staggering of the variables based on the C grid.
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*
Uijeryz = [Huli jar 2, (3.3)
*
V12, = 1h0]i1/2,5, (3.4)

d is the grid size, # and v are the x and y components
of v, and 2 and #*) are h defined at u and v points,
respectively.

Following Arakawa and Lamb (1981 ), we write an
energy-conserving space finite-difference scheme for the
components of the momentum equation (2.1) as

a *
:9_1_‘ Ui j+172 — Qi j+172Vi4172, j+1
* *
= Bijr1/2Vi-172,j41 — Yi,j+172Vi-1/2,j

* *
— 0 ja1/2Viv172,7 F €12, 4172841, j+1/2
* 1
= €i—172,j+1/2Ui-1,j4172 F ;l,' [(K+ ®)iv1/2,j41/2

—(K+ ®)imy/2,54121 =0, (3.5)

*
a1 Vit172,j T Yit1, j+1/28it1, j+1/2

* *
+ 0 juryaMijr12 o1 2UG 12

* *
+ Bivt,j-172Uir1,j-172 F Gir1/2,j+172Vi+1/2,j+1

* 1
= Pir1/2,j-172Vi+1/2,j-1 + 7 [(K+ ®)iv1/2,j+1/2

—(K+ ®)iy1/2,-112] = 0. (3.6)

Here, the coefficients o, 3, v, 6, € and ¢ are linear com-
binations of g at neighboring grid points. We can see
that the terms involving these coefficients have no net
contribution to Zi,j [u:j+|/2 X (35) + vi*_f-l/z,j X (36)]
for a periodic domain.

Arakawa and Lamb (1981) used

uy gl
hijriz2 = (h)ij+12

(v) TJ
hisrya; = (0 )iv1)2,)s

(3.7)
(3.8)

where overbars  and ~’ denote the arithmetic mean
over two neighboring points in x and y directions, re-
spectively. Then the scheme given by (3.5) and (3.6)
conserves total energy for the general case of divergent
mass flux if K is specified as

e Y
Kivi2,j4172 = 2 [ + 0% Y1y je1/2- (3.9)
For more details, see Arakawa and Lamb (1981). In
this paper, we include other possibilities in specifying
h™ and A (see section 5).

From (3.5) and (3.6), we can obtain a discrete ver-
sion of (2.6) as

aJ 1
3 (h(q)q)i,j = 7 [_v;"-‘H/Z,j+l(ai,j+1/2 + Gir12,j4+1/2)

%k *
— Vi1, 41(Bijr172 — Dim1/2,j+172) + Viriy2,)
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X (@i joija = 8ije172) + 012,080 j=172 = Yije172)
+ V512,100 j-172 T Piv1/2,j-1/2)

+ v 2, -1 (Yij-172 = bim1/2,j-1/2)

— Ul jr12(Yisrje1/2 = €iv1/2,54172)

— ufyjo172Bisjo1/2 + €x1/2,j-172) — Uijsis2

X (84172 = Yig+172) — Utj-1/2(ijors2 = Bij-172)
+ uiy 128112 = €c1/2,5+1/2)

+ u?‘—l,j—l/2(ai—l,j—l/2 + €i-172,j-172)].  (3.10)

Here we have defined

_ Ut
iJ:T s (311)
ij
1
fi,j = E [vij—1/2 — Uijr1j2 + Virryz,j — vi—l/z,j]a
(3.12)
and
=
WD =(h);. (3.13)

The coefficients a through ¢ are yet to be specified.
Arakawa and Lamb (1981) showed that the following
choice of these coefficients satisfies potential enstrophy
conservation for the general case of divergent mass flux:

12 = _214_ (2Gi+1,j41 + i je1 + 2655+ Givr ), (3.14)
Bij+12 = 512 (gij+1 + 2Gi-1,j41 + Gi-r,; + 2‘1:',;’), (3.15)
Yij+i2 = 512 (2g;, 41 + Gi-1,j+1 T 2Gi-1,; + gi), (3.16)
0ij+172 = 51; (Gisr,j41 + 2G5 jer + Gij + 2Giv1,j), (3.17)

1
€it1/2,j+1/2 = 5 (Gir1,j41 + Gije1 = Gij — Gix1,))s

(3.18)

1
biv12,j+172 = >4 (=Givrj+1 + Gijer T @iy — Qi j).
(3.19)

Then, as in the continuous case, an energy conserving
and potential-enstrophy dissipating scheme can be ob-
tained by replacing g in (3.14)-(3.19) by ¢ + ¢’ and
by properly choosing g'. Following the procedure
shown in appendix A, we can show that the potential
enstrophy in this system is guaranteed to decrease in
time with the following choice of g"
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, 1 /7
9= " ¢4 (E)i,jIZU:fl/Z,j(qi+l,j —4q.;)

+ 2U;'k—1/2,j(qi,j = gi-1,;) T 2V 120G — 4ij)
+ 2V 124 — Gij—1) + Uiz a2
X (Girr 1 — 4ij) + Ultiy2,j-12(dij; = die1,j—1)

*!
+ Vit e1208i-1,j41 — Gij)

+ V21208 — Gisrj-1)]1,  (3.20)

where
U;'.‘+l/2,j = i (u?‘+1,,~+1,z + Ul 12

+ Ul 12+ Ur2),  (3.21)
Vi = % (VF1/2.01 + V12

+ 000 T VE2), (322)
Ui jein = % (Uler jrrja + Utjers2

+ v+ Vi), (3.23)
Ve = i (V12 m + V512,

— Ul — U r1y2). (3.24)

Asin (2.14), 7 in (3.20) is a time scale to be specified.
The expression of ¢’ given by (3.20) is rather com-
plicated. In order to derive a simpler scheme, we need
more flexibility. This can be obtained for the case of
nondivergent mass flux as shown in the next section.

4. Energy conserving and potential-enstrophy dissi-
pating schemes for the case of nondivergent mass
flux

In this section, we derive a family of schemes with
which energy is conserved and potential enstrophy is
guaranteed to be either conserved or decreased in time
when the mass flux is nondivergent. Following (2.3),
we define y* by

1
u:j+1/2 = E (11/;",3‘ - tl/:":jﬂ), (4.1)

1

v:'k+l/2,j= E(\I/:H,j—\l/rj)- (4.2)

It is well known that, for a horizontal nondivergent
flow, the use of the Arakawa-Jacobian (Arakawa 1966)
for the vorticity advection J(¥, ¢) maintains conser-
vation of enstrophy and kinetic energy. This Jacobian
can be applied directly to the Jacobian in (2.9) to obtain
a finite-difference scheme for the potential vorticity
equation that conserves potential enstrophy and energy
for a nondivergent mass flux. However, since we are



1964 MONTHLY WEATHER REVIEW VOLUME 118

now interested in deriving a family of schemes with Here 4, qz, 4 and 4 are linear combinations of q at
which potential enstrophy can decrease in time, while  neighboring grid points. If we choose
energy is conserved, we generalize the Arakawa-Jaco-

t;ian J 1 so that | Giv1/2. = % (@i, + 4ij)s (44)
5 P ODu =~ g (Wl ¥R e =5 @1 + 0., @
ol 29 Vi) ] 1
- (‘/’:'k—l,j—l + \1’:#1 - 'l/f—l,jﬂ - ‘”,‘jﬂ)qi—lﬂ,j e 2 (qm’jﬂ ’ qi,j)’ -
+ (g Ve — VL~ ¥R Gi-s2012 = %(QH’#I + ), @
= Wl + VB = Ve — VD1 '
+ (Wl — Vi) g — Wi — Vi) th%g:ss?rilgigi&e@céiis S v
X Gi1y2.jm172 + Wl = Vi im12g012 €i1/2,j+1/2 = Binrz iy = 0. (48)

— (Wh — V-0 dmyaj-12]. (43)
s TR Rewriting the rhs of (3.10) using (4.1), (4.2), and

(4.8), we obtain

*
TR [Vin, j(—aijo12 = Birrj—172 F Yirr,je172 + 0ijr1/2)

+ (@it jo1y2 + Bij-1/2 = Yijeijz — Oie1je1y2) + ¢:j+1(_ai,j+l/2 + Bijri2 + Yij+172 — Oijr1s2)
+ ¥rii(@ijo1y2 = Bijoia = Yij-12 + 8ijo12) + Ui (g2 = Yirrj1/2)
+ (= Bijrryz + 8icijwrs2) ¥ 1= imy jorga + Yijo12) + Vit -1(Bivt j-172 — 8ij-172)] (4.9)
Comparing (4.9) with the rhs of (4.3), we obtain the following four pairs of equations:

Qi js172 = Vit j+1)2 = é(—(im/z,j + Gy jr12)s (4.10)
— Qo j-172 ¥ Yij-172 = é (—=Gi1/2,j + Gij-172); (4.11)
—Bij+172 F Oict jr12 = é (Gim1y2,5 — (ii,j-H/Z)a ' (4.12)
Bist,j-1/2 — 5i,j—1/2 = é( Giv1/2,j — ‘ii,j—l/Z); (4.13)

1 o ~ a 2
—ojr1y2 + Bijriz T Yijri2 — Oijr12 = 3 (=Gir1/2,j + Q=172 — Giv1/2,j+172 T Gim1y2,j4172),  (4.14)
1, . ~ n 2
ajj-172 ~ Bij-172 = Yij-172 * 0ij-172 = g( 172, — Qi-12,; — Gi~172,j-172 + 4i+1/2,j—1/2); (4.15)

1,2 I3 a 2
=012 = Birrj-12 ¥ Yirrjrrz + 0ijir2 = g(qi,j+l/2 = Gijo1y2 + Q12,012 — Qivr1/2,j-172)  (4.16)

1 1 1 a 2
aiyjo172 F Bijo12 = Yijr2 — Oinj+1j2 = 3 (~Gijer2 t Gijor2 + Gim172,j-172 — Gimi72,j+172)- (4.17)

Appendix B shows that these pairs of equations are
satisfied by

1
- q. . == e E . + D .
Giv1/2,; (Di+l,j+ Di,j)s (4.18) giv1/2,j+1/2 4( i+1/2,j+1/2 i+1,j+1

!
2
1
2

q:i,j+l/2 (Djje1 + D, j), (4.19) + Dyj— Dijs1 — D))y (4.20)
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and
2 1
div172,j+1/2 = 2 (Eiriy2,j112 — Di+l,j+l

= Dj;+ D;jsy + Dy j). (4.21)

In summary, the use of (4.18)—(4.21) in the rhs of
(4.3) gives a generalization of [J4(g, ¥*)];; while en-
ergy conservation for a nondivergent mass flux is
maintained. From (4.18-4.21), D - g and E — 4q
as d — 0 are required for consistency with the potential
vorticity equation (2.6). These conditions, however,
should be relaxed if the effect of potential enstrophy
dissipation is added to the original equation. Two ex-
amples of specifying D and E, with which potential
enstrophy is guaranteed to be decreased in time, are
given below.

a. D-scheme

If we choose Ei+1/2vj+l/2 = Di+1,j+1 + Di,j + Di,j+l
+ Djy,j7, 4 and 4 given by (4.20) and (4.21) become

1

3
— DHy, = — e
a W D= " p
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A 1
Giv1/2.j+1/2 = 5 (Dir1,j41 + Dip), (4.22)
2 v 1
gi-1/2,j+172 = 5(D1~1,j+1 + D, ;). (4.23)

The use of (4.18)-(4.19) and (4.22)~(4.23) in (4.3)
gives [J4(D, ¥*)],,. Let D = g + ¢'. Then, as shown
in appendix A for the general case of divergent mass
flux, potential enstrophy is guaranteed to decrease in
time with ¢’ given by (3.20).

b. E-scheme

To derive a simpler scheme, let us choose D = g in
(4.18-4.21) with

Eivipajei2 = (it dijrr + Gisrj + Gisr ja1)
+ Elviyz,j4172-  (4.24)

The vorticity equation (4.3) can then be rewritten as

[(\(’Z‘j—l + Yo — Vi — Vi) (@i + 6i)

— (Yo + ‘P;":j~1 — Y — Vi) (@i + gig) + Wk, + Yhi — w;'k—l,j — i)
X (Gijar + @) — Whijm1 + Vi — ¥imnjo — ¥ ) (Gij—1 + Gi)) + 2Nk 2470

1., 1
X (qi+l,j+l +q,;+ EE:+1/2,1'+1/2) — (Wi — ¢f—1,j)(l]i,j + @irj-1 t 3 E'i—l/z,j—l/z) + (W — i)

1 ., 1y
X (qi—l,j+1 t 4t 5 Ei-l/z,j+l/2) — (Yl — ‘l/;’,‘j—l)(Qi,j + Qiv1,j-1 T35 Ei+l/2,j—l/2)] . (4.25)

The rhs of (4.25) becomes [J4(q, ¥*)];; when E’ =
using (A.1), we obtain

0. Multiplying (4.25) by g, j, taking the area mean and

) 1

ot 2

From (4.26) it is clear that potential enstrophy is de-
creased in time if we choose

,
Eiijzji12 = —(‘

h)i+l/2,j+l/2

6
X P [ = Vi) (irr e — 4ij)

+ (\[/?‘+l,j+l - ‘rl/:j)(Qi,j+l = git1,7)]. (4.27)

Here again, 7 is a time scale to be specified. The coef-
ficient of the rhs of (4.27) is chosen so that (4.26) is
consistent with (2.15).

What remains now is to find expressions for the coef-
ficients a, 8, v and 4. Following a procedure parallel
to that used in Arakawa and Lamb (1981, section 4),
we can derive the following expressions:

1
— (h(q) = qz) = E'i+1,'2,j+|/2 W [(‘l/?ﬂ,j - 'SVx":j+l)(Qi+1,j+1 - lIi,j) + (\br+l,j+l - \l/tj)(Qi,j+1 - Qi+1,j)] .
iJj

(4.26)

aij+172 = Ciigzjr172 T % [5i,j41
+ 3(qi; + Giv,j+1) + Gis1.,j + Eiv1/2,j4172], (4.28)
Bij+12 = —Cictpz,jr172 + 4_18 [5i,+1
+3(4gi; + Gi-1,j41) + Gim1j + Eicyyp je12), (429)
Yijri2 = Cicypjara Zlg [5g:;; + 3(gij+1 + i-r,p)
+ Gim1,j+1 T Eimi2,j412), (4.30)

1
0ij+12 = —Cirryzjnz + Ty [54:;

+ 3(gij+1 t Givr,) + Givr,j+1 + Elpryz,je1,2] (4.31)
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Here, C is a linear combination of g at neighboring
grid points.

5. Minimizing the impact of infinite potential vortici-
ties associated with infinitesimal fluid depth

Since C in (4.28)-(4.31) is yet to be specified, the
scheme still has a freedom to satisfy additional require-
ments. For example, by choosing a proper expression
for C [and proper expressions for € and ¢ instead of
(4.8)], we can reconstruct the scheme derived in sec-
tion 3.

In this section, we present another unique member
of the family of schemes derived in section 4. When
the depth of fluid, 4, becomes infinitesimally small, g
= (f+ {)/h generally becomes infinite. (It can be finite
if f+ { also becomes infinitesimally small, as in the
case when a finite initial g is conserved with time. With
the effect of surface stress, however, | {| should become
small as /2 decreases so that f + { should remain finite.)
In the continuous momentum equation (2.1), the term
gk X v* is still finite since g is multiplied by v* = Av,
In the discrete case, however, the corresponding terms
are not necessarily finite because they involve multi-
plications of g by u* or v* at different grid points, as
in (3.5) and (3.6). Thus, du/dt and dv/Jd¢ are not nec-
essarily finite.

To minimize the spurious impact of infinite potential
vorticities at neighboring grid points on du/d¢ and dv/
dt at finite-mass grid points, we impose the following
conditions:

ou . .
A 258 finite,

(5.1)

ov
A m is finite.

Then, for example, du/9dt cannot be infinite unless A
at that grid point is infinitesimally small (i.e., there is
no mass). Moreover, since u and v are finite, (5.1)
with (3.3) and (3.4) indicates

0
u* 6_1: is finite,
(5.2)

v, .
v* — is finite.
ot

This guarantees that the kinetic energy conversion be-
tween u and v components is finite.

From (3.11) and (3.13), ¢;; can become infinite
only when /. 2412, Pic1y2,j+1/25 Picij2,j-1/2 and
hiv12,j-1/2 all approach zero. Then, when (3.5) and
(36) are used, u:":j+1/2, u}fj_l/z, v:’:l/Z,j and U;t-l/2,j
all approach zero. Thus ¢; ; can be used when and only
when it is multiplied by these mass fluxes. More gen-
erally, we find the following conditions:

%* * .
( l) For O jv172Ui j+172Vi+172, j+1 tO be always ﬁnlte,
only g; j+1, Gij, Gi+1,j+1 can be used in ¢ 41,25 (5.3)
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* * .
(2) For 6i,j+|/2ui’j+1/2'v,'_.|/2’j+1 tO be always ﬁmte,
only gij+1, gij» gi-1,j+1 can be used in B j+1/2;  (5.4)

(3) For 7,~,j+|/2u}':j+l/2vf_1/2,j to be always ﬁnite,
only ¢;j, gi j+1, gi-1,j can be used in +; j41,2;  (5.5)

(4) For 6[,j+]/2u:j+|/zv?;1/2,j to be always ﬁnite,
only g; j, gi j+1, gi+1,j can be used in §; j412. (5.6)

We have developed an advection scheme which is
positive definite when ¢ is continuous (Hsu 1988; Hsu
and Arakawa 1990). When this scheme is applied to
the continuity equation (3.1), mass fluxes approach
zero as A at the upstream side approaches zero; in other
words,

*
Uijriz2 >0

as
as

*®
Viviy2,; >0

as

as

It is easy to see that the conditions (5.3)-(5.6) are
valid also for this scheme.

We can show that the E-scheme can satisfy condi-

tions (5.3)-(5.6) if E' and C are properly chosen. Using
(4.1) and (4.2), we can express (4.27) as

hivi2,j+172 > 0 for

hi—l/Z,j+l/2 -0 for

hi+l/2,j+l/2 -0 for

hivij2,j-12 >0 for vy, ;> 0.

T

Elt’+1/2,j+l/2 = —(z)
i+1/2,j+1/2

3
X E [(u:":j+)/2 + u?‘+l,j+l/2)(4i+1,j F Gir1,j+1

* *
= qij— Qi,j+1) + (Vir125 + Viv1y41)

X (Gije1 Qv jet — Gij — Girr, )], (5.9)
Let us choose
1
Cir12,j4172 = 3 (gi; + Girr,j+1 — Gij+r
= gir1,; + Civ/2,j+12), (5.10)
where
, T
Ci+l/2,j+l/2 = z
+1/2,j+1/2
X3 s + +
d [(uijer2 + tivr,jer12)(ai; + Gins,
. * *
= Gij+1 — Girrj+1) T (Vg2 + Vikrga, 1)
X (gij+ Gije1 — Qisr,j — Gier,j+1)]. (5.11)

Substituting (5.9) and (5.10) with (5.11) into (4.28)-
(4.31), we obtain
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1 T
Qje1/2 = D (Gijr + Qi+ Qi jr1) — (Z)
i1/2,j+172

1

X >d Ui je2{@ivr o — i), (5.12)

1 T
Bijri2 = D (Gije1 + @i+ Gy, js1) — (_

h>i—l/2,j+l/2

1

X 3d V¥ @i — 4ij)s  (5.13)

1 T
Yij+1/2 = 75 (gi;+ gijrr + aisyj) — 7
i~1/2,j+1/2

1 )
X — U2 j0172(qi 01 — i), (5.14)

2d
1 T
bijri2 ==t Qi F G y) — | T
12 h i+1/2,j+1/2
1 ,
X 2d Vi ae2(@ e — divry),  (5.15)

where U¥ and V¥ are defined by (3.23) and (3.24).
It is clear that these a, 8, 7, and 6 satisfy the conditions
(5.3)~(5.6). When 7 = 0, these choices correspond to
the scheme derived by Sadourny and subsequently
tested by the European Centre for Medium Range
Weather Forecasts (Burridge and Haseler 1977).

6. Summary and further comments

In this paper we have derived a family of finite-dif-
ference schemes for the shallow water equations, with
which potential enstrophy is guaranteed to be either
conserved or decreased in time while energy is con-
served (when the mass flux is nondivergent and time
is continuous ). The amount of potential enstrophy de-
crease is controlled by a time scale that can be arbi-
trarily specified.

By adding an energy-dissipating term if necessary,
a scheme in this family can be used as a basis for dis-
crete shallow water equations in which the amount of
energy dissipation and that of potential-enstrophy dis-
sipation can be independently controlled based on
physical reasoning.

A member of the family that uses (5.12)-(5.15) in
(3.5) and (3.6) is unique in that the spurious impact
of infinite potential vorticity associated with infinites-
imal fluid depth is minimized. The scheme is, therefore,
especially useful when the free surface can intersect the
bottom boundary. In their numerical model of the at-
mosphere with an isentropic vertical coordinate, Hsu
and Arakawa (1990) used this scheme combined with
a discrete continuity equation that satisfies (5.7) and
(5.8) (see section 6 and appendix B of their paper).
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APPENDIX A

A Potential-Enstrophy Dissipating Scheme

For simplicity, let us assume that the domain is pe-
riodic so that, for an arbitrary variable 4,

A (A.1)

= Aiv1,j4+j7>

where an overbar denotes the average over all grid
points.

Using the coeflicients (3.14)-(3.19) and notations
(3.21)—(3.24) in the rhs of (3.10) and replacing g by
D, we obtain

0 1
Py (h'9q);; = — od [2U%1/2,(Dis1j + Dyj)

—2UE 2, (D + Dicy ) + 2V i s1/2(Dijer + Dij)
— 2V Eic12(Dyj+ Dijoy) + UR 2012
X (Di1ja1 + Dip) = U2, j-1/2(Dij + Dicy j-1)
+ VEas12(Dicyjin + D, ;)

~ VEipj-12(Dij+ Dy )] (A2)

Using (3.1), (3.2), (3.13) and (3.21-3.24), on the
other hand, we may write the continuity equation at
g-points as

:%hglj) = é [U:i\/Z,j - U:'k—x/z,j
+ Vi = Viiapl (A3)
or
'(%hg,qj) == 5 [U;‘il/Z,j+l/2 - U:‘k—,l/2,j—1/2
+ VE e — Vil (Ad)
Let
D,j=q;+qij (A.5)

Then, using (A.1) in

4 X (A.2) — (1/6)q7,[2 X (A3) + (A4)],

we obtain
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+ 2V 2o + @) (Gijer — i)

*
+ Ui/, j4172(Qi1,j01 + q;',j)(qi+l,j+l —q.j)

1 * . Lo DAY, T
- — [2UT+1/2,1(61?+1,,' + q:‘,j)(q#l,j - Qi,j) + V:—|/2,1+1/2(q,—1,1+1 + ql,])(ql—l,j+l Qx,j)]~
6d , (A.6)
Using (A.1) again in (A.6),
9 (a) 1,y _ 15 * *
% h 54 5 ~%d a;,i[2U% 2,/ — 6ij) + 2Ui1y2, (G5 — Gi-1,5)
+ 2V — @) + 2V im12(dij — dij-1)
+ UR1 22080 — 4i)) + Ulti2,j-172(di = Gim1,j-1)
+ Vr—,l/Z,j+l/2(qi—l,j+l - Qi,j) + V:";,—I/Z,j—l/Z(qi,j - qi+l,j—1)] (A7)
From (A.7), it is clear that the rhs of (A.7) is negative
with g} ; given by (3.20). )
For consistency of (B.8) and (B.8'),
APPENDIX B (c — @is1y2,j+12 =(c+ A)iv12,j-172.  (B.I9)

Derivation of (4.18)-(4.21)

For (4.10),(4.12), (4.14) and (4.16) to be consistent
with (4.11), (4.13), (4.15) and (4.17), respectively,
the following conditions are required:

Gisty2,j = Gijerj2 + Giv1/2,j41 Givr,jr12 =0, (B.1)
Gim1/2.) = Gijers2 + Gim1/2,j41 — Gi-1j012=0, (B.2)
~Gir172,j t Gi-1/2,5 = Gir172,j+1/2
+ 65i—1/2,j+1/2 + Gir12,541 — Gim172,j+1
— Gicippjeisz + Qiviga ez = 0, (B.3)
Gijr172 — Gij-1/2 + Givrj2, o102
- éi+1/2,j-l/2 - ‘ii+l,j+l/2 + (?:i+1,j—1/2
+ Giriy2jo172 — Qivrjajer2 = 0. (B.4)

Note that (B.1) and (B.2) are identical and satisfied
by

Cir1y2,j+172 = Giv12,; + Givry2,j41

= Gijrr2 T G o (B.5)

Let
Qis1/2,j+172 = Giv1/2,j+1 — Gix1/2,)> (B.6)
bi+l/2,j+l/2 = (7:'+1,j+1/2 - 5i,j+l/2- (B.7)

From (B.5) and (B.6), we obtain

o~ 1

Giv1/2,) = 5 (c— a)is1y2,j+172» (B.8)
and

~ 1
Giv1/2,j41 = E(C + a)ic1/2,j4172- (B.8")

From (B.5) and (B.7), on the other hand, we obtain

I 1 )
Gijr1/2 = 3 (¢ = D)is1/2,j+1725 (B.10)
3 1 '
Git1,j1/2 = 5 (¢c+ Blisrjzjr12.  (B.10)
For consistency of (B.10) and (B.10’),
(¢ = B)is12,j+172 = (€ + D)ic1y2,j+172.  (B.11)

To find expressions for a and b, we substitute (B.6)
into (B.3) and (B.7) into (B.4). The results are

i1, e172 — Gimapper = (@ = Dinpeg
(G- é)i—l/Z,j+1/2 =0, (B.12)
—bicij2e172 + birrsz -2 + (§ = Dinry2, 0172
+ (4 - q;:)i+l/2,j——1/2 = Q.
Since Z;(B.12) and 2; (B.13) with (A.1) give
-22(G- ‘;)i+1/2,j+1/2 =0
i

(B.13)

and

2 E (é - é)i+l/2,j+l/2 =0,
J

4 — ¢ must have a form of differences in both x and y
directions. Thus we may write

(4 — @Qir12,j4172

= =(Dis1,j+1 + Dij — D j1

— Di1j), (B.14)

!
2
where D is a linear combination of g at neighboring
grid points. Using (B.14) in (B.12),



OCTOBER 1990

2ai0172, 5412 — Div1,jer + Digyj — Dijo + Dy
= 2ai-1s2,j+172 — Dijr1 + Dij— Dicy ju1 + Doy .
(B.15)

Thus the expression on each side of (B.15) is constant
as i 1s changed. Taking the constant as zero,
1
Aiv1/2,j+1/2 = 5 (Dis1,j+1 = Diyj + Dijuy — D).
(B.16)

Following a similar argument using (B.14) in (B.13),

1
bi+l/2,j+l/2 = E (Di+1,j+1 - Di,j+l + Di+1,j - Di,j)'
(B.17)
With (B.16), (B.9) is satisfied by

1
Civt/2,j41/2 = 5 (Div1,j+1 + Dijur + Digyj + Dy ).
(B.18)

Another expression for ¢ may be obtained from (B.17)
and (B.11). The result is, however, identical to (B.18).

The expressions for § and ¢ in terms of D can now
be obtained. Using (B.16) and (B.18) in (B.8), we
obtain (4.18). Using (B.17) and (B.18) in (B.10), on
the other hand, we obtain (4.19). To express § and
q, let

1

(4+ j)i+l/2,j+l/2 =5 Eivij2,j+172- (B.19)

Then, from (B.14) and (B.19), we obtain (4.20)
and (4.21).
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