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ABSTRACT

To improve the simulation of nonlinear aspects of the flow over steep topography, a potential
enstrophy and energy conserving scheme for the shallow water equations is derived. It is pointed
out that a family of schemes can conserve total energy for general flow and potential enstrophy
for flow with no mass flux divergence. The newly derived scheme is a unique member of this
family, that conserves both potential enstrophy and energy for general flow. Comparison by means
of ‘numerical experiment with a scheme that conserves (potential) enstrophy for purely horizontal
nondivergent flow demonstrated the considerable superiority of the newly derived potential enstrophy
and energy conserving scheme, not only in suppressing a spurious energy cascade but also in determin-
ing the overall flow regime. The potential enstrophy and energy conserving scheme for a spherical

grid is also presented.

1. Introduction

The possibility of improvement in the prediction
of planetary-scale waves, which should be relatively
free of truncation errors in a linearized system, rests
on evidence that the mechanisms for their genera-
tion and subsequent time change are nonlinear and
involve smaller scales. Indeed, medium-range nu-
merical prediction experiments (e.g., Miyakoda
et al., 1977) have shown that a decrease in hori-
zontal grid size improved the predictability even of
large, and presumably already well-resolved, plane-
tary waves. Thus, improved prediction of these
waves with conventional GCM grid sizes must be
accomplished by better simulation of the underlying
nonlinear mechanisms.

In nature, steep mountains play an extremely im-
portant role in the generation and maintenance of
both planetary- and cyclone-scale waves. Cyclone
activities are by no means uniform in longitude and
are subject, not to the zonal mean baroclinicity, but
to local baroclinicity produced, in part, by the
earth’s large-scale topography. Lee cyclones are
produced that interact with planetary waves, not
only dynamically but also thermodynamically
through forcing due to the release of latent heat.
In addition, steep mountains can directly influence
the dynamics of planetary waves, even if they are
longitudinally very narrow, provided that they are
sufficiently high and have a large enough meridional
extent. When conventional GCM grid sizes are used,
however, even the Rocky Mountains extend at most
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only a few grid intervals in longitude and, therefore,
care must be taken to reduce the possibility of
serious truncation error in the dynamical response
of the model atmosphere.

The effect of truncation error is minimized for a
given differencing scheme when the grid size isin a
range for which the solution shows no significant
change with increased resolution. However, whether
a given grid size is in-such a range or, indeed,
whether such a range can be found is highly scheme-
dependent in nonlinear systems. For example,
Arakawa and Lamb (1977) showed that some com-
mon schemes for two-dimensional incompressible
flow produce a spurious energy cascade even
though the total energy is conserved. After time
integrations of sufficient length with such schemes,
a significant amount of energy exists in the smallest
resolvable scales, where truncation error is large.
Under such conditions a decrease in the grid size
will always affect the solution. On the other hand,
solutions with a scheme that prevents a false energy
cascade should be relatively smooth and, therefore,
should not be significantly affected by a decrease
in the grid size. This means that the original solu-
tion is already a good approximation. Such a scheme
can be found only by making the nonlinear aspects
of the dynamics of the discrete system as close as
possible to those of the original continuous system.

It should be pointed out that increasing the order
of accuracy does not necessarily guarantee much
improvement. If a significant amount of energy
exists in the smallest resolvable scales resulting
from a spurious energy cascade, convergence of the

Taylor expansion of the truncation error may not be
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sufficiently rapid due to large values of higher order
derivatives.

In this paper a differencing scheme is sought
whose dynamics represent well even the nonlinear
aspects of the flow over steep topography of a
homogeneous incompressible shallow fluid. In such
a fluid, flow over and near mountains is governed
during advective processes by the conservation of
(absolute) potential vorticity n/h, where 7 is the
(absolute) vorticity and % is the depth of the fluid.
Consequently, the (absolute) potential enstrophy
YVam?lh is conserved, where the overbar means a
horizontal average. Since

< —';lﬂ N = hpa(n?/h) = constant,
there is an upper bound for (absolute) enstrophy
14m. Therefore, in this system an energy cascade is
restricted though 4 is variable, as it is in a purely
two-dimensional flow.

We have found that conventional space finite-
difference schemes for the momentum equation,
when applied to the shallow water equations, corre-
spond to very bad advection schemes for the po-
tential vorticity in the presence of steep mountains.

In particular, conservation of potential enstrophy -

is not guaranteed, even when the scheme guarantees
enstrophy ‘conservation for a purely two-dimen-
sional flow. To overcome this deficiency, a space
finite-difference scheme for the shallow water
momentum equations was designed to conserve
potential enstrophy as well as total energy.

In Section 2, the shallow water equations are
presented and a method of derivation of potential
enstrophy conserving schemes is outlined. The
method is used in Section 3 to derive a scheme for
which conservation of potential enstrophy is
guaranteed in the general case of divergent mass
flux. In Section 4, a family of schemes that conserve
potential enstrophy only in the special case of non-
divergent mass flux is derived. The advantages of
the potential enstrophy conserving scheme derived
in Section 3 are demonstrated in Section 5 through a
comparison, by means of numerical time integra-
tions, with a scheme that conserves (potential)
enstrophy only for purely two-dimensional flow. The
Appendix presents the potential enstrophy and
energy conserving scheme for a spherical grid
that can be derived by analogy to the procedure
in Section 3.

2. Outline of the derivation procedure

The governing differential equations for quasi-
static motion in a homogeneous incompressible fluid
with a free surface can be written as

O kX vt V(K D) =0,

2.1
ot
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Eﬁ + V-v¥ = 0.

ot ‘
Here the (absolute) potential vorticity g and the
mass flux v* are defined by

q=(+ C)h"]

v¥ = hy

(2.2)

2.3)

and v is the horizontal velocity, ¢t the time, f the
Coriolis parameter, { the vorticity, k-V X v, k the
vertical unit vector, V the horizontal del operator,
h the vertical extent of a fluid column above the
bottom surface, K the Kinetic energy per unit mass,
14v?, g the gravitational acceleration, h, the bottom
surface height, and

® = g(h + hy). (2.5)
Multiplying (2.1) by v* and combining the results
with (2.2) yield the equation for the time change of
total kinetic energy
g—(hK) + V- (v*K) + vV = 0. (2.6)
t

Multiplying (2.2) by & gives the equation for the
time change of potential energy,

g-(‘/zgh2 + ghhy) + V-(v*®) — v¥-VO = 0. (2.7)
t

The summation of (2.6) and (2.7) then yields a state-
ment of the conservation of total energy

—(% [W(K + Vagh + ghy)] = 0, (2.8)
where the overbar, here and in the text to follow,
denotes the mean over an infinite domain or over a
finite domain with no inflow or outflow through the
boundaries. Obviously, the term in (2.1) involving q
makes no contribution to the change of total kinetic
energy. Also, the last term in (2.6) and (2.7) cancel
in giving (2.8). These points will be used in the

construction of the finite-difference scheme.
The vorticity equation for this fluid motion is
obtained from (2.1) and may be written in the form
9 (hg) + V-(v¥q) = 0. 2.9

ot
Subtracting (2.2) times g from (2.9) and dividing
by h gives
ﬂ +v:Vg = 0.
ot

Thus potential vorticity is simply advected and in
the absence of spatial gradients of g there should
be no time change of g. Only schemes that pre-
serve this property will be considered in this paper.
Now hq times (2.10) plus Y2q* times (2.2) gives
the equation for time change of potential enstrophy

(2.10)
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F1G. 1. The staggering of the variables based on the C grid to
be used in the derivation of the square grid version of the po-
tential enstrophy and energy conserving scheme.

gt-(hl/zqz) + V- (v¥ag?) = 0, 2.1
which leads to a statement of the conservation of
potential enstrophy,

S (i = o. (2.12)
ot

Since our goal is the derivation of a finite-differ-
ence scheme for the momentum equations that bet-
ter represents the flow over steep bottom topog-
raphy, the first requirement we impose is that it be
consistent with a reasonable advection scheme for
potential vorticity advection equation (2.10). In
particular, because the scheme is to be used in a
long-term integration, we require conservation of
total energy and potential enstrophy, as given by
(2.8) and (2.12), respectively. The derivation proce-
dure for such a scheme is outlined here and pre-
sented in detail in the next section.

A general difference scheme for (2.1) can be writ-
ten to directly guarantee conservation of total kinetic
energy in the special case of nondivergent mass flux.
Even after the constraints necessary to achieve total

energy conservation in the divergent mass flux case’

are applied, the scheme still retains a high degree of
freedom. We first require that when g is constant
in space, there is no time change of q. Then, to
guarantee conservation of potential enstrophy, we
require that the finite-difference analog of (2.12)
holds. These requirements essentially fix the
scheme; the small remaining freedom is used to pre-
serve symmetry between the Cartesian components
of the momentum equations for the case of a square
grid.
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3. Derivation of the potential enstrophy conserving
scheme

The staggering of the variables to be used in this
derivation, called the C grid, is shown in Fig. 1.
Here 4 and v are the Cartesian components of v
in x and y directions, respectively. The choice of
the C grid is based on the fact that it best simu-
lates the geostrophic adjustment mechanism (Ara-
kawa and Lamb, 1977). The indexing will-be as
shown in the figure, with the indices (i,j) used for
the vorticity points. The time derivatives will be
left, for simplicity, in differential form throughout.

The differencing for the continuity equation (2.2)
can be written :

a .
"a_thi+1/2,j+1/2 + (V-v)isizg012 = 0, 3.1

where
(Vv9irip 12 = 7 L s ie1re - Ufivie
+ vy — Vil (3.2)
Uit jrie = [h(u)u]i+l,j+i/29 (3.3)
v, = [(A)p,, 3.4

and 4™ and A are the k values at ¥ and v points,
respectively, as yet unspecified. .

The general second-order scheme chosen to repre-
sent the Cartesian components of the momentum
equation (2.1) is
a

— Uitz —

ot

t — *
12V e, — Biir120E 12,541

— * —_ * *

Vist1oVi1e,s = Gis1eViies + €zttt
* -1

— €1 ir1pUiiie + AdT(K + Py, iiane

- (K + q))i—uz,jﬂ/z] =0, (3-5)

and
* *
> Virrzg + ViergrieU i Lirye T Oujr1pUlivge

* ®
+ o jorptiioge t Birnic1e Ui

+ biraz,ir12Vi 12,501
-1
+ d7(K + Pz

— (K + ®)iyyp,512] = 0. (3.6)

The symbols «, B, v, 8, € and ¢ are linear com-
binations of the ¢ and K is defined at the 4 points;
the actual forms of all are as yet unspecified. The
pairs of terms involving € and ¢, which give addi-
tional generality to the scheme, should vanish when
the grid size approaches zero as required for con-
sistency. :

Mulitiplying (3.5) by u};.,,» and (3.6) by v{,),,; and
summing the resulting equations over the entire do-
main allows us to write an equation for the time
change of total kinetic energy:

i+1/2,i—1/2Vi+112,5—1
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0 0
2 — (h"%u?); 5 + Y — (W%,

u pts v pts

>

u pts

(1/2142 _6_h(u))
ot
-2

(Vzvz _a_ h(v))
v pts ot i+1/2,

- 2 UK + D)V v iirmjr1e = 0.
h pts
Here we have made use of the fact that for any
variables a, b defined at staggered points on the
grid,

2 a;,i(biryp,;

a pts

i,i+1/2

3.7)

- bi—llz,j)

== Y bt (Givr; — i), (3.8)
b pts

and a similar relation with regard to thej index. Note

that the terms involving g in the momentum equa-

tions have cancelled simply by virtue of the form

adopted in (3.5) and (3.6). .

0
™ (h'9g);, ;

= d v @sie T Girvzirrz) — Ve iri(Bijryz — biczirie) + Ve (o1 —
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In the special case of nondivergent mass flux, for
which V-v* = 0, Eq. (3.1) reduces to 8l 15 j+12/0t
= 0, and the total kinetic energy as given in the
first two terms of (3.7) is conserved regardless of
the forms of A, h® or K. To maintain conserva-
tion of the same form of total kinetic energy in the
case for which V-v* # 0 (but without the pressure
gradient forces), it is necessary that A’ and K be
chosen such that through the use of (3.1) we can
write

14,2 _(1 w 14492 i o)
Y {(Yau h + Y |V h
ot i+1/2.

u pts Li+1/2 v opts ot
+ ¥ (KV-V¥)0502 = 0. (3.9
h pts

For the moment, however, A®, A and thus K will
be left unspecified because the potential enstrophy
conservation constraint to be applied does not de-
pend on the form chosen for these variables.

Application of (3.5) and (3.6) at the points sur-
rounding a { point gives the finite-difference vor-
ticity equation consistent with this scheme:

81',1'+1l2)

+ vz*—l/Z,j(.Bi,j~l/2 = Vi) t V1B T ¢i+1/2,j—1/2) + vz*—uz,j—l(%,j—uz - Cbi—xfz,j—uz)

Y _ ok _ * —
uyse12(Yiet,ir12 €ir1/2,541/2) uir2(i a1 Yigerz) + W1 120815412 €im1/2,7+1/2)

- uﬁl,j——lﬂ(ﬁi-&-l,)’—lﬂ + €i+1/2,-j—1/2) - u?fj—uz(ai,j—uz - 31‘,;'-1/2) + ul*~1,j—l/2(ai—l,j—1/2 + 51‘——112,1'——112)]9 (3.10)

where the vorticity change has been expressed as d(h'?q); ;/6t, with

+ s
y= f (q)C) = (3.11)
h i’j
Ly =d Uiz — Uiseae + Vikips — Vices)s (3.12)

and 4? is a linear combination of 4, as yet unspecified.
We first require that dq/dr vanish when g is formally set equal to constant on the right-hand side of
(3.10), regardless of the constant. If we write a, 8, v, 8, € and ¢ in general form as linear combinations

of the surrounding ¢,

Qigrie = Vi1 + a®qi 0 + a®q; + a®qip;
= B 01 + BP0 + BOior; + BYqu;
Yotz = Y 0500 + YPGionim1 + ¥Oqi15 + Y Pqu,;
= 871,501 + 8Pqi 4 + 89, ; + 894y,

Bi,]'+1/2

8i,J'~4)—1/2

— (2) (3 ey
€ir12.5t12 = € 'Qirri+r T €295501 + €9q;; + €¥qi4;

- 2 (2) (3) (4) .
birrz iz = O VGirr e T PG00 + 6¥qi; + 900

s | (3.13)
\

then when ¢ is formally set equal to a constant, (3.10) can be written as

0
2 hig

ot

1 N
-3 [((A + F)(12,561 — V.5 + (C — E)ufiyjire — ufjpp) + (B — F)(0k g0 — Vi)

+ (D = EXU¥jrre ~ Uty pmp) + (C = F)iie,; — viipa) + (A + E)ufiye — ufa-1e)

+ (D + F) ke, — vEapi-) + (B + E)ufiy e — 4],

(3.14)
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whereA = Y, a®,B = ¥, 8%, etc. For any speci-
fication of A2 this equation can only be satisfied
if the values of A, B, C, D, E and F render it con-
sistent with the continuity equation (3.1).

In the present case of a square grid, for simplicity
and geometrical symmetry, 2@ is defined as

(@ —
hD = Ya(hirye,s012 + Ricyzieage

v + Rirppgorp t Pirrgziio12)-
Now from (3.1) and (3.15) we can write

(3.15)

2 gy
o
= —~(VAD[(vF1 2,41 — Vs T Ufiigrne — Ufiiye)

# R % %
+ W41 — Vs t UFieye — UE 1 e12)

* g * %
+ (Ve — Viaor + Uy — UL ae)

+ (e — Ve T UE e — uE_p)]. (3.16)

Comparison of (f3.14) and (3.16) yields the con-
straints

E=F=0, A=B=C=D="%. (3.17)

The complete specification of «, 8, v, 8, € and
¢ will be determined by requiring that the scheme
conserve potential enstrophy in the general case of
divergent mass flux. To formulate the necessary and
sufficient conditions for this requirement, we can
use the expressions (3.13) to formally rewrite (3.10)
as

6 .
— (h'9g)i; + X QugivinariDivier
or i, #0

+ bi;q:,; =0, (3.18)

bij = (a® = 8fip; + (BY = yPwkip,; + (6% +

= (@® + ¢k — (BY — ¢k e — (YP =
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where the a and b are linear combinations of u* and
v*. We can then express (3.14) as

a
—-h:?} + 2 A jii+it j+i’ + bi,j = 0. (3.19)
ot 3140
Subtracting (3.19) times g, ; from (3.18), multiplying
the result by ¢; ; and adding it to Y2q?; times (3.19)
gives the desired potential enstrophy equation:

ad
— (h%q®); + Y (QugureseiQive e 9i)
ot i*,51#0

+ Y2qii(bi; — 2 Qigiviger) = 0.

i,J'#£0

(3.20)

Conservation of potential enstrophy over the do-
main, i.e.,

5 .
> — W(h'9%g?),; = 0 3.21)
is thus guaranteed if and only if
Y Y QusirintrQiveserdi; = 0, (3.22)
4,5 i%.§7#0
D> Y2qi;lb;; - Z i jiving+r] = 0. (3.23)
i i*,§'#0
To satisfy (3.22) we must have
Qi gititgt+ir = TQivinivit i (3.24)
and to satisfy (3.23),
bi;= 2 Qi jitit,j+it (3.25)

1,51 #0

To impose these constraints we use (3.13) to write
(3.10) explicitly in the form given by (3.18) and
obtain

Wi g + (Y = S IWE 12,51

(3, % — (83 _ a4
€y e (6 Y1

+ (8% — 5(4))ui*—1,1'+1/2 - (B? + _5(2))“?11,1—1/2 = (a® = BNuFi_ip + (@ + €Yuf, 10, (3.26)

ai‘j;i-H.j = (a(l) _ 6(4))0?_11/2,]‘ + (5(17 + ¢(1))v1"'f+1/2,j—1 — (a(4) + ¢(4))Uiﬁ—1/2,j+l

(4)

-y

@i i1 = (B2 = Yiaps + P = 2050 — (BY = Wm0 + YOUE 1
+ (0¥ — €Mufiiip + BPufiap + (a® + €P)ut i,
= =8P 1,5 — YV 1 — (@® + ¢V — (BY —
= (y? = e — P — yuFie + BV — €uE e,
a(mvzé'lx/z,j + BYvE 1 + (8 + ¢z + (Y = @021

= (BY + €Mufii e — (@ = BOufiyp + (@ + eP)uty g,

A i 5+1

Ai g1

Qi jsit1,5+1
Ai,5i-1,j-1
I ¢ 3 IO _ 2) _
ai,5i-1,j+1 YPvE 10, — (B

A jit1.5—1

— )% _ sy, ¥ — (W (10}, % — %
€Ny ire — 8uFiine — (BY + €Mufiyian QU2

S8y — (D) (DY % (D _ sy,
= =8V, (e + &'l 12,500 0% € Dufii e & Uij+12s
— p@,* @) _ pDY, % 3y, % @ @)y, %

= BP0 p,; + (y O o5y + BPUE i + (@® + €Dk 5y,

(2)),,% (2),,% 2

SOWE 2,01 T YPUE e + (8P — €P)uE L i,

= (4% (4) (4)Y 442 - 4) (4)),, % 4 ’
= a®vf e, + (Y + ¢ — (BY + €)uf s — aPuiye J

N

¢(U)U§k—1/2,]‘+1

(3.27)
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Applying first the constraint given by (3.25) for arbi-
trary «* and v* and simplifying, using (3.17), requires

1
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3D — &P — ¢® 1

,y(l) _ .y(4) + ¢(4)

23

@ _ 8@ — QD _ 4 —
4] 5 8 Y 0 a® + ¢@ — q®
(3) _ o) — (D _ @D —
) Y a B 0 BY — ¢V — @ =0 (3.29b)
8D + ¢ =y — OV = 1g . ?
Y (3.28) P — €2 4 gD 4 @
a(3) + ¢(3) — 3(4) — ¢(4) = 1/8]
8(2) —_ .y(l) + a(S) — B(4)
3} - 3 — 84 _ (4 1 .
Y € & € Ve 5D — D 4 @ 4 @
B? + € = o + &b = 14 ' ’
. . (1) _ A3 3)
To apply the constraint (3.24), each a; j,;_i ;_y 18 re- o LA
quired to equal —a; ;1. ;+» When all pairs of indices a + ¢ — g®
appearing in the former are incremented by (i',j'). o o " =0, (3.29¢)
This gives the following conditions: LA il o)
oV — 5D 4 gD — 4 & — a® ~ |
S + ¢(1) + ,y(z) — ‘1)(2) ,y(z) — & — ¢(4) 3
a(4) + (4) + 3 (3) (2) __ (2) _ a(4)
VAT B =4 0. (3.299)
Y — P~ =0, (3.292) Y — g — @
8(4) —_ 8(3) + 6(8) 8(2) _ e(2) — a(4)
BY + €V — g¥ Now (3.28) and (3.29) can be combined and all co-
al — o® — @ ) Z)f(gcients expressed in terms of €V, €, ¢V, and
alV = 1 — b a? = lha; a® = 14 — @ a® = —Yhs + €V + ¢® ]
B(l) — 1/24; B(?) = 1/24 + e(l); 3(3) —_ 1/8 —_ 6(l) + d)(l)-’ B(4) —_ 1/24 —_ d)(l)
,yu) = 1% + d)u); 7(2) =~y — ® — ¢(1); y(s) = 1% + ¥ ,y(4) = Yy

6(1) = g + e(3) — ¢(3);
€2 = Y, — 6(1);

¢ = Yy — PP,

8P = hy + ¢©;

€D = 1, — _6(3)

W = —Y2 — ¢

8 = tha;

5 = 1, — ®

(3.30)

J

In the square grid case we should require that u* and v* be treated in an identical manner under rotation
of the axes and thus, for example, that the coefficient of g; ;uf;. ., in the v equation at (i + !4, j) be equal
to that of the product q; ;v¥ . in the u equation at (i,j — ¥2). Applying this requirement to all gu* and
qv* terms leads to the following constraints:

a® = Bm;

3 = @

From (3.30) and (3.31), we obtain
€¥ = —b

a? = g, a®
)
(2) — ().
8% = o'l
P = Yy — by

5@ =

a® = g®
5 = o®
(D — D 1,

If we now choose, simply for reasons of symmetry between € and ¢,

€V = Yy,

the terms in (3.13) are completely specified, as

€it1/2,5+1/2
¢i+1/2,5+1/2
@, j+1/2
Bii+12
Yi.it1/2

61',1'+112

1/24[Qi+l,j+l + Gij+1

2412Gis1,501 T Giser ¥ 2Gis + Givs)
V2alqise1 + 2qic1501 + Gics t 2q4,5]
242Gs,541 + Gicrie1 + 2qic1; + i)
24l Girrie + 2qise + Gis + 2Gisa) )

= GQi; — Gi+1.il
= Y24l~Gir1,01 T Giser T Qs = disr,s)

3.3D

(3.32)

(3.33)

(3.34)
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The rate of increase in the total kinetic energy
due to the pressure gradient force is seen from (3.7)
to be ,
' - 2 (@V V)i jrip.
h pts .
The rate of increase of total potential energy at the
point (i + 12,j + %4)is obtained by multiplying (3.1)
by ®;.12.5112- When we choose

(3.35)

B = (B senns (3.36)
h(ig-)lﬂ,j = (1-1])141/2,1, (3.37)

in the definition of «* and v* given by (3.3) and (3.4),
where overbars —i and —j denote the arithmetic
average of two neighboring points in x and y direc-
tions respectively, we obtain

> 9 [V2gh® + ghhgdivip,iine

hpts Of
+ 2 ((I)V 'V*)i+1/2,j+1/2 = 0.

h pts

From (3.35) and (3.38), it is clear that the finite-

difference form of the pressure gradient force in (3.5)

and (3.6) does not cause any production of total

energy.

With 2 and 4™ given by (3.36) and (3.37), the
form for X is now fixed by the requirement for con-
servation of total kinetic energy given by (3.9). Mak-
ing use of the continuity equation (3.1) and the fact
that for any variables a, b on a staggered grid

S (b)) = 3 b (@ (3.39)

a pts b pts

Eq. (3.9) can be written

(3.38)

oh
5|5 )
nots L\ O Jirymirire

x (G + Ta® — K)i+1/2,j+1/2] =0, (3.40)
and thus '
A ——i
Kivizz = Yau® + Ya0% )i je1pe. (3.41)

In summary, use of (3.11), (3.12), (3.15), (3.34),
(3.36), (3.37) and (3.41) in (3.1)-(3.6) gives a po-

g ¥,
1

= - .[(lll?fj—l + ¢‘z*+1,j—1 - l[’l?,:j+l - lpitl,jﬂ)(‘?iﬂ,j + q:',j) - (ll/z*—l,jq + 'J/?fj—l - ll/z*—l,jﬂ -

124%

X (Gi + Gi-1,) + Pl + b —
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tential enstrophy and energy conserving scheme for
the shallow water equations.

4. Potential enstrophy conservation schemes for the
case of no mass flux divergence

In the previous section, a space finite-difference
scheme was derived that conserved energy and po-
tential enstrophy for the general case of divergent
mass flux. In order to show the relationship between
that scheme and certain other recently proposed
schemes, we consider in this section schemes that
have the same energy conservation properties but
conserve potential enstrophy only in the special case
of nondivergent mass flux, for which V-v* = 0. In
such flow we can define a streamfunction y* for
the mass flux such that

vE =k X Vi, 4.1
Eq. (2.9) can then be expressed as
9
o (hq) + JW*,q) = 0, 4.2)

where the Jacobian is deﬁned, in the  customary
way, as

It is now well known (Arakawa, 1966, 1970) that
for horizontal nondivergent flow the use of the finite-
difference Arakawa-Jacobian denoted by J, to repre-
sent the advection term J(,{) in the vorticity equa-
tion maintains the conservation of enstrophy and
kinetic energy. This result can be applied directly
to the Jacobian in (4.2) to give a finite-difference

" representation for the vorticity equation that guaran-

tees conservation of potential enstrophy for fiow
in which V:v* = 0. A scheme for the momentum
equation (2.1) then conserves potential enstrophy
if the finite-difference potential vorticity equation
derived from it reduces to (4.2) with J,(y*,q) when
V-v¥ = 0.

The Arakawa Jacobian is presented below for con-
venience:

i)

Y — YE L) (i + Qi) — Wi + Pl

= Yo — UE LG t i) + W — $Ea )G + i) — WFio = YE LG + Gimiio1)
+ @ — U Qe + Gus) — Wy — U Gas + G-l (4.3)

With

Ufiye = d(P¥ — i)

vfaps = d7 Wk — UF),

and

4.4)
4.5)
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the right-hand side of (3.10) can be rewritten as

—_ g2 * — —
d7 Yl (- oz + iz T Yievirie

+ (Bt — Yegre —

3k _ _
+ Y2 + Bisrie = Siruz t Visre

* —
+ (Ve t Sismre t o
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)31'+1,j—1/2 — €iv1y2,5-12 T €i+1/2,j+112)

Sistgrie t iirjye T €ypiye T €iygirg)

¢i+1/2,j+1/2 - ¢i—1/2,}+1/2)

Bi,j—l/Z + ¢i+1/2,j—1/2 + ¢i—1/2,j—1/2)

*
+ U2 = Yisnire T €tz T Givrziene)

FYE (= Brjre + Bt irye — €imyzirnz T Gierz i)

+ Y- (Vi —

Equating (4.6) with the right-hand side of (4.3) gives
four independent constraints on a, 8, v, 9, €, ¢,
as functions of ¢:

— Qo2 t it Yirnjeie

- Bi+l,1'—1/2 = €ir1/2.5-1/2 — €it+1/2.5+1/2

(4.7a)

—_ 1 —_ —_
= —h2AGir1,i1 + Gisjm1 — Qirrier — Giie1)s
— iz T Bi,i+1/2 - 8i,j+1/2

+ Yiiriz = Dirrzirie — Pierzirie

= —N2AGirr5+1 + Girri — Gi—rge1 — Gi-r.3), (4.7b)
Qij+yz — Yitri+12 + €12tz T ¢i+1/2,j+1/2
= _1/12(%'+1,j = qi,+1), (4.7¢)
_ﬁi,j+1i2 + 81‘—1,;’4—1/2 = €i—112,j+1/2 + ¢i—1/2,j+1/2
= ~2(qii41 — Gi-ry). (4.7d)

If the four equations (4.7) are required to hoid
for every (i,j), we can solve for a, 8, ¥ and § in
terms of ¢, both explicitly and implicitly through
€ and ¢. To this end, we let

Yo, j12 + Yirrirrz) = Aivrpgrige 4.8)
Then, using (4.7¢),
Qi iz = Avrzgrie + Y202 = Yirriti2)
= Asizirre = 24(Givri — Giirr)
— Ya(e + Dinizr1p, (4.9
Yirvitrz = Asyziere T 24(Qivri = Giier)
+ Yale + B)irig,jr12-  (4.10)

Similarly, we let
Yo(Bijere + iri412) = Bicypiree (4.11)
Then, using (4.7d),
Bij+iz = Bicigirie + Y2(Bijre —
= Bi_ipjerz + 24(Giger — Gi-1,9)
- Ya(e — (ﬁ)i—uz,jﬂlza 4.12)

Bi-1,5+1/2)

Xi—1,5~12 — €i-1/2,5-172 — ¢i—l/2;i*l/2)

+ Y1 (=8 mye + Btz T €ruziorz — Pirreir2)]

(4.6)

Si—1.ir12 = Bicypirie — 124(Qise1 — Gic1.s)
+ Ya(e - ¢)i—1;2,j+1/2~ (4~13)

As (4.9), (4.10), (4.12) and (4.13) must hold for every
(i,j), they can be used in (4.7a) to give

(A + B)ivipz,jrre — Wl Givnien + Qivry + Gier + g5
= (A + Biyip,j1e — BlGir1; T Qirs,im
+ qi; + Gi-1]. (4.14)

By the same method (4.9), (4.10), (4.12) and (4.13)
can be used in (4.7b) to give

(A + B)isrgire — WlGisrion + Qijer + Qi + Gyl
= (A + B2 — BlGit1 + Gim1,51
+ qi; + qi1;]. (4.15)

The same expression is thus shown to have a con-
stant value under variation of the i index by (4.14)
and of the j index by (4.15). The constant can be
taken equal to zero without loss of generality and
we have, for all i and j

(A + B)iyys0102
= W(Gir1,541 + Guir1 T Qirr; T qi3)-  (4.16)

Instead of solving (4.16) for either A or B, symmetry
will be preserved by writing each in terms of a new
variable. For this purpose we define

Cirizirre = Y2(A — Bt a2

Then combining (4.16) and (4.17), we obtain

4.17)

Ai+1/2,j+1/2 = Ci+1/2,j+1/2

+ N6(Gisr,i41 + Qijer + Gisr + qi5). (4.18)
Bitizierz = —Cirymaitrsz
+ he(qirr541 + Gt + Qisr; + qis) (4.19)

These expressions, used in (4.9), (4.10), (4.12) and
(4.13), allow us to write «, 8, v, 8, respectively,
in terms of the surrounding g, the as-yet-undeter-



26 MONTHLY WE

mined functions € and ¢, and the new variable C.
The final form is given below:

Q54152 = Ci+1/2,;i+1l2
+ Yas[5qi 541 + 3(qu; T Girrgr1) T Givrs)
= Va(€isrzjarz T Pirjeirrs2)s
Biiv1z = —Cizyp i
+ Ya8[5qi 41 + 3(qi; + Gicr,541) + Gica ]
- 1/2(€i~1/2,j+1/2 = Gicrpz,ivue)s
Yiirre = Ciciie12
+ Y%s[5qi; + 3(qiie t Giori) + Qo]
‘- + Vo112 + Dicrziraz)s
O 12 = —Civ1z.412

+ Yas[S5q:,; + 3(Gise1 + Gisr,s) T Gisr41)
+ Yal€irra,i01e = Divrziirre).  (4.20)

There is thus a family of schemes of the form
(3.5), (3.6), with a, B, y and & given by (4.20) and
K, h™®, h® related by (3.9). All schemes in the family
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guarantee conservation of kinetic energy in the V-v*
# 0 case, and of potential enstrophy in the V-v*
= 0 case.

It can be mentioned here that the scheme for the
differencing of the momentum advection terms de-
rived by Sadourny and subsequently tested by the
European Centre for Medium Range Weather Fore-
casts (Burridge and Haseler, 1977) is a member of
this family. Applying their scheme to a square grid
and using the present indexing and notation, we have

@iz = 2(Giier + Gii T Girr,541)

Bisrie = N2Aqie + iy + Gicrie)

Yisruz = h2qiie + i + Gi-1,5) (4.21)
8ir1ie = N12(qGise1 + Qi + Givrs)

€iv1/2,5+1/2 ¢i+1/2,j+1/2 =0

By comparison with (4.20), these definitions corre-
spond to a choice of

Ci+1/2,‘j+1/2

= Ya8[Gije1 — Gi; + Qirr; — Qirrinn]. (4.22)

2.0
o COARSE GRID (d=500km)
154 ©® MEDIUM GRID (d=250km)}
;‘: . FINE GRID (d= 125 km)
- .
I
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F1G. 2. The plain view of the topography and its recognition by the
course, medium and fine grids.
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FiG. 3. Examples of the potential enstrophy increase in time using the PE
non-conserving scheme for different grid sizes.
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4. Result of the integration with the coarse grid using the PE non-conserving scheme averaged over the
10-day periods from day 20 to 30 (the upper figure) and day 40 to 50 (the lower figure).
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As (4.21) is not equivalent to the scheme derived
in Section 3, given by (3.34), it is clear that the
choice of C given by (4.22) does not utilize the free-
dom remaining in (4.20) to achieve conservation of
potential enstrophy for a general flow.

5. Numerical tests of the potential enstrophy conserv-
ing scheme

In this section the properties of the scheme de-
rived in Section 3 (hereafter referred to as the PE
conserving scheme) are compared with those of a
scheme that conserves (potential) enstrophy only for
purely horizontal nondivergent flow (hereafter re-
ferred to as the PE non-conserving scheme), by
means of numerical integrations. The PE non-
conserving scheme corresponds to that previously
used in the UCLA general circulation model, but

P.E. CONSERVING UNFORCED

HSMAX= 2 KM HZERO= 5 KM

TRIANGLE RIDGE A=500 KM

2000

A\ A\ W A\ A\t A\ | -

-126~—

1000
X

e ——
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TEN DAY AVERAGE

GRAV= 9.8 M/Swm2

B0 e o e e A s e e S =

=
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applied to the shallow water equations (Arakawa
and Lamb, 1977, Section III C).

The domain used in the numerical experiments
is'bounded by y = 0 and y = 2000 km, where rigid
walls are assumed, and by x = 0 and x = 6000 km,
where cyclic boundary conditions are applied. In the
first set of experiments, the mean height of the free
surface H, is 5 km; the acceleration of gravity g is
9.8 m s72; and the Coriolis parameter f is 107* s,
The bottom topography is a narrow ridge, centered
at x = 3000 km, that uniformly extends across the
channel in y and has a triangular shape in x, with a
maximum height of 2 km and a bottom width of 1000
km. Experiments were performed with three dif-
ferent grid sizes: d = 500, 250 and 125 km. Fig. 2
shows the plan view of the topography and how it
is recognized by the A-points of each of the three
grids. At the lateral boundaries, the rigid wall con-

20 - 30 ODAYS
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Fi1G. 5. As in Fig. 4 except using the PE conserving scheme. A
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dition » = 0 and a computational boundary condi-
tion { = 0 are applied. The second-order Heun
scheme is used for the initial time step and once in
every 300 leapfrog time steps. The time interval A
is 10 min for d = 500 km, 5 min ford = 250 km and
25 min for 4 = 125 km. The initial conditions are a
uniform zonal current of 20 m s™! and a horizontal
free surface.

Fig. 3 shows the potential enstrophy increase in
time with the PE non-conserving scheme. From this
figure it is clear that no improvement in conserva-
tion of potential enstrophy is achieved by decreasing
the grid size from 500 to 250 km. Even withd = 125

AKIO ARAKAWA AND VIVIAN R. LAMB 29

km there is a considerable increase of potential en-
strophy in time.

Fig. 4 shows the wind vector based on i#* and
?/ at h points and the differential height of the free
surface, h + h, — H,, for the case withd = 500 km,
averaged over the 10-day periods from day 20 to 30
and from day 40 to 50. The wind vector field shows
that a large amount of meridional kinetic energy
exists in the smallest resolvable scale in x, even
for 10-day average, and continues to grow in time.
Total energy, on the other hand, is practically con-
served throughout the integration and the growth
of meridional kinetic energy takes place at the ex-
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HSMAX= 4 KM HZERO= 5 KM DEVIATION CBEPTH FIELD rDRSHED LINE) IN METERS
TRIANGLE RIDGE R:=560 KM GRAV= 0.98M/Sw«xZ GRID SIZE-500 KM TIME $TeP=18090 SEC
«©
8
o~
-10¢ — \ - f 2p8 1
L~ / } J )9-0 \\;\,._ 9 ‘?0 \a ’, ~ — —_—
AN / yd NV VN
\ // s \\ v \\ / r
\ £ / AN \ \<
- AN -
N V / //J / )T ° AN
[=] // / / / / / } \\
i SVAENEN |
S LSS R = e
oo S LN N - e
P - Y \ \ ———— .
o — " - // //\[ \ N SRSl
N M T e 4290 ) W 3o 203 100 oy N N N
(&)

G 10060 2000

3000 4000 5309 6000

Fi1G. 6a. Results of the integration with forcing and friction averaged over the 10-day period from day 20 to 30
using the PE nonconserving scheme with the course grid.
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FIG. 6b. Results of the integration with forcing and friction averaged over the 10-day period from day 20 to 30
using the PE conserving scheme with the coarse grid.
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pense of zonal kinetic energy and, to a lesser extent,
of available potential energy.

Fig. 5 corresponds to Fig. 4 but with the new PE
conserving scheme. The computational noise in the
wind field is now drastically reduced.

To compare solutions of the two schemes in the
simulation of a statistically steady state, we per-
formed a second set of experiments. A surface stress
linearly proportional to the wind, with coefficient
0.25 x 1075 s7*, and a uniform westerly momentum
generation of 2.5 X 107° m s~2 per unit mass are in-
troduced. The maximum height of the mountain is
increased to 4 km, and g is reduced to 0.98 m s~2
to partially include the effect of stratification. All
other parameters, domain geometry and numerical
procedures are the same as in the previous experi-
ments, except that Af is increased by the factor of
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3 for each grid size and the Euler scheme with 2Ar
time interval is used for the friction term. The initial
condition has no motion and horizontal free surface
H = H,. Figs. 6-8 show the time averages for the
period from day 20 to 30.
Figs 6a and 6b show that with the coarse grid,
= 500 km, the PE non-conserving scheme pro-
duces a weak, relatively disorganized flow, while the
PE conserving scheme produces an organized,
dominantly westerly flow with a continuous mean-
dering jet stream. The PE non-conserving scheme
produces a weak ridge at the west side of the moun-
tain, while the new scheme produces a stronger
ridge almost right over the mountain. From Figs.
7a and 7b it is seen that even with the medium grid,
d = 250 km, the situation does not change signif-
icantly. Figs. 8a and 8b, however, show that with
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the fine grid, d = 125 km, the two schemes produce
an almost identical field. By comparing Figs. 6a and
7a with Fig. 8a and Figs. 6b and 7b with Fig. 8b,
we see that, as the grid size is reduced, the char-
acteristics of the produced field change less with the
PE conserving scheme than with the PE non-con-
serving scheme. This indicates that the solution with
the PE conserving scheme is in an approximately
convergent range even with the coarse grid, while
that with the PE non-conserving scheme is not.

6. Summary and further comments

A second-order space difference scheme for the
shallow water equations that conserves both poten-
tial enstrophy and total energy under the existence
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of bottom topography has been derived and tested.
Comparison by means of numerical experiment with
a scheme that conserves (potential) enstrophy only
for purely horizontal nondivergent flow demon-
strated the considerable superiority of the newly
designed potential enstrophy conserving scheme,
not only in suppressing a spurious energy cascade
but also in determining the overall flow regime.

In addition, a family of schemes has been de-
rived that conserves total energy for a general flow
but potential enstrophy only for flow in which there
is no mass flux divergence. It is pointed out that
the newly designed scheme is a unique member of
this family, that has the constraint of potential en-
strophy conservation for flow with mass flux di-
vergence.
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In the newly designed scheme, momentum con-
servation under advective process (i.e., without bot-
tom topography and friction) is not formally guaran-
teed when the flow is divergent. Further numerical
experiments under such conditions have demon-
strated, however, that momentum was conserved
by the scheme with sufficient accuracy.

The analogous second-order scheme for a spheri-
cal grid is presented in the Appendix. The fourth-
order version of the scheme, both for square and
spherical grids, has been derived by K. Takano of
- UCLA.

When the scheme presented here is applied to a
three-dimensional model with a non-material surface
vertical coordinate, linear computational instability
of a meridionally propagating inertia-gravity wave
can occur. Existence of such instability was first
pointed out by Hollingsworth and Kéllberg (personal
communication) of European Centre for Medium
Range Forecasts. We have-found that use of

_ ) y 2)i
Kiiipgre = Muiae + Yol + i)l

+ [Yavh e + e(Vipae + Vimig2) P

(6.1

instead of (3.41) practically eliminates the instability.
More details on this matter will be presented in a
forthcoming paper.
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APPENDIX

The Potential Enstrophy Conserving Scheme for the
Shallow Water Equations on a Spherical Grid

1. The governing equations in orthogonal curvilinear
coordinates

Let the orthogonal curvilinear coordinates be ¢
and 7. Let the actual distances corresponding to
d¢ and dm be (ds), and (ds),, respectively, and de-
fine the metric factors, m, n such that
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(ds)e = (1/m)dé

. Al
(ds), = (1/n)dm (AD

Let the component of v in £ be ¥ and the compo-
nent of v in 7 be v. In the spherical coordinates,
£ = X\ (longitude), and 1 = ¢ (latitude), 1/m = a cose
and 1/n = a, where a is the radius of the earth.
The shallow water equations (2.1) and (2.2) on an
orthogonal curvilinear grid take the form

?_<.‘i)—qﬁ’i+-9_(1<+cb)=o, (A2)
ot\m m o¢
-‘9—(-”—)+qf”—+—a-(1<+d>)=o, (A3)
ot\n n on

) ) ) e w

where g, K and ® are defined in Section 2. The
vorticity { = k-V X v can be expressed as

_ _2,1] _ (AS)

Multiplying (A2) by Au/n, (A3) by hv/m, (Ad) by
K and adding gives the equation for the time change
of kinetic energy
_6_(_h__ K) + _i_(_}_l_u_ K) + _i(i'f_ K)
ot\mn 0f\ n on\ m
hv D

m 0¢

hu o® .
+ 27 (A6)
n 0¢
2. Derivation of the finite-difference scheme for in-
terior points of the spherical grid '

Despite the presence of the metric factors, the way
of derivation of a difference scheme for the con-
tinuity equation and for the advection and Coriolis
terms in the ¥ and v momentum equations closely
parallels the methods presented in Section 3. Many
of the results of that section will be utilized directly,
without repetition of the derivation.

A portion of the spherical grid with the variables
staggered as in the C grid and the indices (i,j) cen-
tered at a g point is shown in Fig. Al. Here A¢
and An are constant grid intervals in £ and 7, respec-
tively, and m and » are assumed to vary only in .

For the continuity equation (A4) multiplied by
A¢An, the following finite difference form is chosen:

9 .
—Hiyp ez + Uiigere = Ul
ot
+ vF 241 — Vs = 0, (A7)
with A¢An
Hi,5012 = Riv12,541/25 (A8)

(mn)ji1p
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pé/m |
—

AVIR:

F1G. Al. A portion of the spherical grid used in the derivation
of the spherical grid version of the potential enstrophy and energy
conserving scheme. The area of the dotted region is represented
by (AEAM/ mn)isypz,54112 (Se€ the text).

An
Uiz = (HuU; 4y
LIS (A9)
A¢
V2,5 = (BP0)is1p2,5
m;

Here AéAn/(mn),,,, is area of the stippled region in
Fig. Al and A%, h™ are as-yet-unspecified functions
of h.

Ignoring pressure gradient forces, the remaining
terms to be considered can be represented as in the
square grid case,

d A€
ot mjy1p

—_ * —_ *
Uiz — Qgrpbivyese = Biiryeliye,iv

- * _ *
Yi.i+12Vi-112,5 i jr12Vi% 12,5

* — *
T €z rr2¥it,iv2 €i—1/2,5+12Hi-1,5+1/2

+ [Ki+1/2,j+112 - Ki—1/2,j+ll2] =0, (Al())

0 An
— — Vits2.j

ot n;

* *
+ VirvjrreUfiirye T Oijr1eUive

* *
+ o1 Ui e+ Bivsi-12Uitai-e

* *
+ biryzjruelivie v T Girrei-120812,5-1
+ [Kitizirre — Kivrzi—12] = 0, (Al1)

but u* and v* are now defined by (A9). The coef-
ficients «, B, vy, 8, € and ¢ are again functions of
q to be determined, where ¢q;; = (f + {);,#/h% and
h@ is an as-yet-unspecified function of 4. The finite-
difference form for { chosen is

A¢An no /i, i-1/2,j

Lii —
n
(o) ()] A
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As in the square grid case, ™ and A® are
chosen as

hw =
] (A13)

_ o =j
Then from the finite-difference analog of (A6) it is
easily shown that to maintain conservation of total
kinetic energy for divergent mass flux we must
specify :
(mn)is1p [_1_ AfAn u?

AéAn

i

Ki+1/2,j+1/2 =

2 Mir1pNyiap

__A J
¢ 126, (Al4)
2 m;n;

]i+1/2,j+1l2

Just as in the square grid case, «, 8, v, 8, € and
¢ will be determined by constraints on the potential
vorticity advection and potential enstrophy conser-
vation for the general case of divergent mass flux.
These requirements are imposed through the same
procedure as before. The functions a, 8, v, 8, eand ¢
are expressed in general form as functions of the
surrounding g values as in (3.13) but where the co-
efficients must now be allowed to vary with 7, as
do the metric factors. The function A‘? is also de-
fined more generally to allow variation of the weight-
ing factors with 7

@ — 1
hG = p}hivyz,ivne + Ricuziruz)

+ pH hivyziouz + Ricyzican),  (A1S5)
where, for consistency, it is required that
p} +p} =Y. (A16)

In addition, when the metric factors are constant
in 7, the square grid result p! = p? = ¥4 must be
recovered.

Applying the constraint on advection of potential
vorticity just as in Section 3 gives the requirements

mn);
Ajryp = Bjyyp = L_—'Ji}ﬁpjl, (Al8a)

(mn);
mn);..
Cisyz =Djypp = (__)—]1_/2'1)1'29 (A18b)
(mn);
Eivyz = Cipyz — Ajrves (A18c)
Fj+1/2 = 0 (A18d)

(mn)j_q2 1 _ (mn)jzqs 5

Jt+1

(mn);—, (mn)r,

_ (mn);yy2 1 _ (mn);_y2 P (A19)
(mn); (mn);
From (A16) we can express p} and p?
pi =%+ P
p}="'a— P,-} ’

and use (A18a,b,c) and (A19) to solve for the single
variable P;:

i

(A20)
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1
- (mn)i_yje + (mn)jpype
= Ya(mn){(Ei_y2 — Eixy2)].  (A21)

It did not prove necessary to use the variable E
in order to achieve a scheme with the desired prop-
erties. Thus,-as F must vanish, £ was chosen to
vanish as well for simplicity, and we have from (A21)
and (A20)

[Ya(( mn)j;1/2 —(mn)jyy2)

i
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SO that Aj+1/2 = Cj—1/2' Bllt from (AISC) and E-..1/2
= 0,A;_y, = C;_y and thus A must be independent
of j. From (A23), then, we must require

(mn);_yo(mn)ipy2 - l
(mn)[(mn);_y; + (mn)j+1/2]. 2

AfAn 1[

or
A¢Anm

(mn);_y2

AéAn

(mn)iy s

‘ ), 5 ] . (A29)

p} _1I (mn);_y2 The area A¢Aw/(nm); for g points must thus be a
T2 nn)ee + (MN)ers mean of the areas A£An/(mn);—;, and A§An/(mn);,
(A22) for h points. ,
p, = 1 (mn);sqe The constraints imposed up to this point give A
T2 (mn);_ys + (MA)j440 =B=C=D=WE=F=0 apd
Then \ . . 1 (mn),
N = : 7
A]+1/2 BJ+1/2 4 (mn)ﬁ“2 (A25)
_ 1 (mn);_yo(mn);eyp . _ 1 (mn)
2 (mn)imn)ye + ()il | a0y e
Civin = Do The procedure for requiring conservation of po-
1 (mn);yyo(mn);ss tential enstrophy is identical to that presented for
=3 ‘ . 1 the square grid and we can use the result given as
2 (m)yal(mm)yrae + (MA)se] | (3.34) directly, where g is now defined, using (A15)
and (A25), as :
Gis = Ji+ s
.7
) (mn)j[ Risysirue + Rioyzjene Rivya,i—yz + Ricyi12 J
4 (mn)sspe (mn);_y2
AfAn
——(f; + &iy)
(mn);

(A26).

ValH iy 12,5002 + Hiyppgeye + Hivrzjmve + Hizyz joy2]

and A¢Arn/(mn); must satisfy (A24).

3. Maodification of the scheme at the poles

The poles are singular points of the spherical co-
ordinates and the velocity components cannot be
defined there. The poles will thus be specified as
q points, for then the velocity at the pole appears
in the continuity and momentum equations only
through the quotient vA¢/m, which vanishes at the
pole, and the modification of the difference equa-
tions derived in the previous section is quite straight-
forward. The staggering of the variables and index-
ing notation is as shown in Fig. A2, chosen arbi-
trarily as the North Pole.

The continuity equation at j- = p — % takes the form

0H 1112,5-112
ot

*
+ ufiyep-12

(A27)

— ¥ ok -
Ui—yi2,0-1/2 viyze-1 = 0,

where
AfAn n

Hi+1/2,p—1/2 =0
(mn)y_ys

i+1/2,p—1/2

The representation of the advection terms in the
u momentum equation at latitude p — %% and in the
v momentum equation at latitude p — 1 will be modi-
fied by the vanishing of v* at the pole. However,
the following general forms can still maintain the
correct cancellation of the terms between equations
required in the derivation of the kinetic energy equa-
tion

i(uAg

o\ m

— ® _ 5 *
) Yi.o—12Vi—1/2,p—1 82V y2.p1
i.p—1/2

' * ! *
+ €2 p-12Uir 1012 €i—12.p-12Ui—1.p—-12

! ' -
+ [Ki+l/2,p—l/2 - Kl'——l/2,p—1/2] - 09

'

(A28)
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0 {vAn
—(—) + (‘y’u*)i+1,p—1/2 + (O'U™®)ip-1j2
o\ n Jiryep
+ (@u*)ip-g2 + (BuU*)it1p-32 — Diry2.o-20F 1202
+ [Kisyzp-12 = Kirizp-32] = 0. (A29)

In the above equations, the primed variables are to
be determined; the others are defined as in (3.34).
At the poles, we define g through the circulation

theorem
_ f » T gp
qp = —}7‘;7— s (A30)
where
1 IMAX uA
L=— 3 (—ﬁ) )
A = m Jip-12
Ag = IMAX 2647 (A32)
(m")p

The factor AéAr/(mn), in (A32) represents the area
of the hatched region in Fig. A2, and IMAX is the
total number of grid points in the ¢ direction.

The formation of the kinetic energy equation at
J = p — V5 leads to the result that for kinetic energy
conservation in the divergent mass flux case we must
define

i

A¢ An

My_1j2 Np—yj2

v%ﬂ,z,p_,} . (A33)

2
Uip-12

mn,._
, p-1/2
Kiiip-12 [

1
2 AéAn
+1 A¢é Ay
2myy npy

It remains to apply the constraints on potential
vorticity advection and potential enstrophy conser-
vation at j =p — 1 and j = p. For advection of
potential vorticity, as before, we specify £? and re-
quire that the potential vorticity equation be con-
sistent with the continuity equation when ¢ is con-
stant in space. Atj = p- 1,

h® = pP(Micypp-12 + Ricypp-vi2)

+ PP(hivyzp-s2 T Ricrpp-zze), (A34)

and after making use of the values (3.34) for interior
points and taking E' = 0, we obtain

s

1 - 1 -
(’}) (mn)p 1 @ — _ (mn)p 1 , (A35)
4 (mn)y_yp2 4 (mn)y_g;
and C' = D' = V4. The requirement for consistency

in (A34) gives the constraint on the area-weighting
factors

Adan 1 [ AfAn
(mn)y_y 2L (mn)y_y2

A¢An
(mn)y—a2

To apply the same constraint on the advection

] . (A36)
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FiG. A2. The spherical grid near the North Pole used in the
derivation of the spherical grid version of the potential enstrophy
and energy conserving scheme. The areas of the dotted and
hatched regions respectively represent (AéAn/mn), and (A£A»/
mn),_y. (see the text).

of potential vorticity at the pole, we let A be a
function of all IMAX 4 values at p — ¥4, such that

IMAX
hi@ = 2 PR 20125 (A37)
where
IMAX
S pw =1 (A38)

i=1

When we require consistency between the vorticity
and continuity equations at the pole, it turns out
that

1
= , A39
Py’ = TAX (A39)
AEA 1 A£A
£An _ 1 AflAq . (A40)
(mn), 2 (mn)y_y;

The area factors AéAn/(mn), and AéAn/(mn),—y,
in (A40), on the other hand, must approximate the
geometrical areas of the hatched and stippled regions
in Fig. A2, respectively. It is then desirable to
choose a grid such that (A40) is approximately satis-
fied by the geometrical areas. Thus the distance
(An/n),-,» in Fig. A2 is chosen to be 3 of An/n
for the interior part of the grid.

Turning now to the requirement of potential en-
strophy conservation, we must form the equations
for time change of potential enstrophy atj =p ~ 1
and j = p and require that they interact with the
similar equation at j = p — 2 and with each other
to give a vanishing global sum. A lengthy manipula-
tion following the now familiar procedure finally
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gives
Yio-1 = 124[3qy + 2Gi-1,0-32 t Gip-32]
Sio-1 ="24[3¢, + Gipg2 + 2qi+1,p—3l2] (A41)

— 1 e —_—
€irv20-1 = 402G, — Gip-32 — Girrp-32]
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