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­z

­t
5 J(z, c), (2)

The integral constraints on quadratic quantities of physical impor-
tance, such as conservation of mean kinetic energy and mean square
vorticity, will not be maintained in finite difference analogues of or
the equation of motion for two-dimensional incompressible flow,
unless the finite difference Jacobian expression for the advection
term is restricted to a form which properly represents the interaction ­ =2c

­t
5 J(=2c, c), (3)

between grid points, as derived in this paper. It is shown that the
derived form of the finite difference Jacobian prevents nonlinear
computational instability and thereby permits long-term numerical where J is the Jacobian operator with respect to the rectan-
integrations.  1966 Academic Press

gular coordinates, x and y, in the plane.
When the Jacobian in this equation is replaced by space-

differences of the usual form,INTRODUCTION

A major difficulty, which has blocked progress in long-
Ji, j(z, c) 5

1
4d2 [(zi11, j 2 zi21, j) (ci, j11 2 ci, j21)

(4)
term numerical integration of the equations of fluid mo-
tion, has been nonlinear computational instability of the

2 (zi, j11 2 zi, j21) (ci11, j 2 ci21, j)],
finite difference analogues of the governing differential
equations. The existence and cause of this instability was

where i is the finite-difference grid index in x, j is the indexfirst called to our attention by Phillips [1, 2].
in y, and d is the grid interval, and the equation is integratedThe instability can be illustrated by integration of the
over some tens of time steps, using an ordinary time-cen-vorticity equation for two-dimensional incompressible
tered differencing scheme, it is found that the solutionflow,
begins to show a characteristic structure termed ‘‘stretch-
ing’’ or ‘‘noodling’’ [3, 4]. This is a structure in which the
motion degenerates into eddies of a few grid intervals in­z

­t
1 v ? = z 5 0, (1)

size and of elongated, filamented shape.
The early stages of this noodling can be due to physical

processes, but, once formed, the eddies usually intensifywhere
without limit, causing computational instability and explo-
sive growth of the total kinetic energy of the system. It is

v 5 k 3 = c, also observed that as integration proceeds the energy is
distributed over a broader and broader range of wavez 5 k ? = 3 v ; =2c,
number.

Platzman [3] recognized the existence of ‘‘aliasing er-
and c is the stream function, = is the two-dimensional

rors,’’ or errors due to misrepresentation of the shorter
del operator, and k is unit vector normal to the plane

waves because of the inability of the finite grid to properly
of motion.

resolve them. Phillips [2] further showed that the above
Equation (1) can be rewritten as

computational instability can be caused by this ‘‘aliasing.’’
In addition, Richtmeyer [5] pointed out that, in a one-
dimensional hyperbolic problem, if the disturbance is outReprinted from Volume 1, Number 1, August 1966, pages 119–143.

1 U.C.L.A. Department of Meteorology, Contribution No. 122. of the properly defined linear range the rate of false growth
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cannot be reduced by shortening the time interval. Miya- dK
dt

5
d
dt On Kn 5 0, Kn ; 1

2
(=cn)2, (9)koda [6] showed that this type of computational instability

(which Phillips found for the nonlinear equations) can also
occur in a linear equation with nonconstant coefficients. and

For long-term integration of the equations of fluid mo-
tion it is necessary to overcome the computational instabil- dV

dt
5

d
dt On Vn 5 0, Vn ; 1

2
(=2cn)2 5 k2

nKn . (10)ity through proper computational design of the integration.
Because this nonlinear instability has its origin in space-
truncation errors, this paper will be concerned with the Therefore, the average wave number, k, defined by
proper form of space-differencing. It will describe the prin-
ciple and give some examples of space-difference schemes
in which the nonlinear computational instability does not

k2 ;
O
n

k2
nKn

O
n

Kn

, (11)appear. The paper will discuss, moreover, not only the
stability of the difference scheme, but also how well the
scheme similates other important properties of the continu-
ous fluid, such as the constraint on the spectral distribution is conserved with time. This shows that no systematic one-
of its energy. way cascade of energy into shorter waves can occur in two-

dimensional incompressible flow, as Fjørtoft [7] pointed
out. If we consider, for example, three waves (or threeI. CONSTRAINTS ON THE ADVECTION TERM
groups of waves, each of which has a characteristic average
scale), only the following energy exchanges are possible:Equation (1) implies the conservation of vorticity for

individual fluid particles and, therefore, the frequency dis-
KL r KM R KS ,tribution of the vorticities of the fluid elements does not

change with time in two-dimensional incompressible flow.
orMoreover, since the advection of vorticity, like the advec-

tion of any quantity in two-dimensional incompressible
KL R KMr KS ,flow, can be expressed by a Jacobian, as in (2) or (3), we

can easily see that there are strong integral constraints on
where KL , KM , and KS are the mean kinetic energies ofthe advection term, which come from the nature of the
the long wave(s), medium wave(s), and short wave(s), re-Jacobian. Among these constraints, the following are the
spectively. Moreover, it turns out that relatively little en-simplest ones with which we are concerned:
ergy exchange can take place between KM and KS , com-
pared with the energy exchange between KL and KM .

J(p, q) 5 0, (5)
It can also be shown, from the conservation of mean

square vorticity, that the mean square total deformation,pJ(p, q) 5 0, (6)
D2

1 1 D2
2, is also conserved. HereqJ(p, q) 5 0, (7)

D1 ; 1
2 S­u

­x
2

­v
­yD,

(12)
where p and q are any arguments and the bar denotes the
average over the domain in the plane of motion, along the
boundary of which either p or q is constant. From these

D2 ; 1
2 S­u

­y
1

­v
­xD,integral constraints, applied to the advection of vorticity,

we can see that the mean vorticity, z, the mean kinetic
energy, K ; As v2 5 As (= c)2, and the mean square vorticity,
2V ; z 2 5 (=2c)2, in a closed domain, across the boundary

6
u ; 2

­c

­y
, v ; ­c

­x
, (13)

of which there is no inflow or outflow, are conserved
with time.

and there is an identity:Expanding c into the series of orthogonal harmonic
functions, cn , which satisfy

4J(u, v) 5 z 2 2 4(D2
1 1 D2

2). (14)

=2cn 1 k2
ncn 5 0, (8)

As we have seen so far, the simple integral requirements,
(5), (6), and (7), lead to important integral constraints
on two-dimensional incompressible flow. But not only thewe get
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mean vorticity and the quadratic means (such as mean gives us the clue to the treatment of the two-dimensional
horizontal differencing.kinetic energy, mean square vorticity, and mean magnitude

of deformation) are constrained. The spectral energy distri-
bution is also constrained, because the average wave num- II. FINITE DIFFERENCE ANALOGUES
ber defined by (11) is conserved. Of course, these con- OF THE JACOBIAN
straints are not sufficient to keep the frequency distribution

The finite difference analogue of the Jacobian at theof vorticity constant. However, it should be noted that the
grid point (i, j) may be written, in a relatively generalconstraints on the mean vorticity, z, and on the mean
form, assquare vorticity, z 2, are the constraints on the first and

second moments of the frequency distribution of the vor-
Ji, j(z, c) 5 O

i9, j9
O
i0, j0

ci, j ;i9, j9;i0, j0 zi1i9, j1j9 ci1i0, j1j0 , (15)ticity.
One can easily visualize that in the usual scheme, given

by (4), these integral constraints might not be maintained
where zi1i9, j1j9 is the vorticity at a neighboring grid pointin a proper way. But if we can find a finite difference
(i 1 i9, j 1 j9) and ci1i0, j1j0 is the stream function at ascheme which has constraints analogous to the integral
neighboring grid point (i 1 i0, j 1 j0). The coefficientsconstraints of the differential form, the solution will not
ci, j; i9, j9; i0, j0 must be chosen in such a way that (15) is anshow the false ‘‘noodling,’’ followed by computational in-
approximation to the Jacobian with the order of accuracystability.
we need. In addition, we have the requirements mentionedIf we are only concerned with avoiding the computa-
in the last section, which are now constraints on these coef-tional instability, the conservation of either of the quadratic
ficients.means (the mean kinetic energy or mean square vorticity)

In order to see when the square of the vorticity is con-will be sufficient. But it is very desirable to require the
served, it is convenient to defineconservation of both, because together they are a con-

straint on the spectral change of energy, as previously
ai, j; i1i9, j1j9 ; O

i0, j0

ci, j; i9, j9; i0, j0 ci1i0, j1j0 ; (16)shown. Moreover, conservation of only one of these qua-
dratic means is equivalent to the abandonment of the Ja-
cobian property that J(p, q) 5 2J(q, p), and hence that

thus ai, j;i1i9, j1j9 is a linear combination of c, or, in fact, a
J(p, p) 5 0.

linear combination of the velocity components as ex-
It is known that the spectral computation of the Jacobian

pressed by finite differences of the stream function. Then
in wave number space, by means of truncated Fourier

we have
series (or spherical harmonics for the motion on a sphere),
allows the conservation of the quadratic quantities. The

Ji, j(z, c) 5 O
i9, j9

ai, j; i1i9, j1j9 zi1i9, j1j9 . (17)energy and the square of the vorticity can be transferred
from one wave to another, in a consistent manner, without
the false gain or loss of these quantities. However, spectral When all of the zi1i9, j1j9 are formally put equal to a constant,
computation has a practical disadvantage, in that the com- the Jacobian must vanish, regardless of the value of the
putation time increases as the square of the number of constant. Thus we have
degrees of freedom, whereas there is only a linear increase
of the computing time when using a finite difference O

i9, j9
ai, j; i1i9, j1j9 5 0, (18)

scheme.
Our problem, then, is to find a finite difference scheme

for the Jacobian, by means of which the two quadratic which is a finite difference expression for = ? v 5 0, as we
quantities, the kinetic energy and the square of the vortic- shall see, later, more clearly.
ity, are transferred, in a two-dimensional plane, from one Multiplying (15) by 2zi, j , we obtain
grid point to another, without false gain or loss. In this
way, the integral constraints on the quadratic quantities 2zi, j Ji, j(z, c) 5 O

i9, j9

2ai, j; i1i9, j1j9 zi, j zi1i9, j1j9 . (19)
will be maintained when the integration is replaced by the
summation of the quantities at the discrete grid points.

Lorenz [8], in dealing with the equations for a three- From (2), we see that the left hand side of (19) is the time
change of z 2

i, j due to advection. Therefore, we can interpretdimensional motion, showed how one can maintain inte-
gral constraints on quadratic quantities when vertical deriv- the term 2ai, j; i1i9, j1j9 zi, jzi1i9, j1j9 as the square vorticity gain

at the grid point (i, j) due to the interaction with the gridatives are replaced by vertical finite differences. In that
work, he kept the horizontal derivatives in their differential point (i 1 i9, j 1 j9). Similarly, 2ai1i9, j1j9 ; i, j zi1i9, j1j9 zi, j can be

interpreted as the square vorticity gain at the grid pointform. But his procedure for the single vertical dimension
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(i 1 i9, j 1 j9) due to the interaction with the grid point The flux form, given by (25), shows that the flux of a
quantity from grid point (i, j) to (i 1 i9, j 1 j9) is expressed(i, j). These two quantities must have the same magnitude

and opposite sign, regardless of the values of zi, j and zi1i9, j1j9 , as the product of the corresponding mass flux and the
arithmetic mean of the quantities at the two grid points.in order to avoid false production of square vorticity.

Therefore, we have the requirement The finite difference analogue for the vertical flux of poten-
tial temperature, obtained by Lorenz [8], has this form.

Multiplying (22) by 2zi, j , we getai1i9, j1j9 ; i, j 5 2ai, j; i1i9, j1j9 , (20)

in particular 2zi, j Ji, j(z, c) 5 O
i9, j9

* [2ai, j; i1i9, j1j9 zi, j zi1i9, j1j9
(29)

2 2ai2i9, j2j9; i, j zi2i9, j2j9 zi, j].ai, j; i, j 5 0, (209)

It is seen that the right-hand side again consists of theif the square vorticity is to be conserved in the finite differ-
differences of fluxes of the square vorticity in which geo-ence scheme.
metrical means appear, in contrast to the arithmetic meansReplacing i by i 2 i9 and j by j 2 j9 in (20), we get
in (25). We see, therefore, that if (20) and (209) hold,
both Ji, j(z, c) and 2zi, j Ji, j(z, c) can be properly written inai, j; i2i9, j2j9 5 2ai2i9, j2j9; i, j . (21)
flux forms.

In the usual finite difference scheme for the Jacobian,Equations (17) and (18) are now rewritten as
given by (4), we have

Ji, j(z, c) 5 O
i9, j9

* [ai, j; i1i9, j1j9 zi1i9, j1j9

ai, j; i11, j 5
1

4d2 (ci, j11 2 ci, j21), (30.1)
2 ai2i9, j2j9; i, j zi2i9, j2j9], (22)

O
i9, j9

* [ai, j,i1i9, j1j9 2 ai2i9, j2j9; i, j] 5 0, (23) ai, j; i21, j 5 2
1

4d2 (ci, j11 2 ci, j21), (30.2)

ai, j; i, j11 5 2
1

4d2 (ci11, j 2 ci21, j), (30.3)where o*
i9, j9 denotes the summation for the indices j9 . 0,

i9 v 0 and j9 5 0, i9 . 0. Taking into account (23), (22)
can also be rewritten as ai, j; i, j21 5

1
4d2 (ci11, j 2 ci21, j), (30.4)

Ji, j(z, c) 5 O
i9, j9

* [ai, j; i1i9, j1j9 (zi1i9, j1j9 2 zi, j)
(24) for arbitrary i and j. Replacing i by i 1 1 in (30.2), and

1 ai2i9, j2j9; i, j (zi, j 2 zi2i9, j2j9)], replacing j by j 1 1 in (30.4), we get

or
ai11, j; i, j 5 2

1
4d2 (ci11, j11 2 ci11, j21), (30.29)

Ji, j(z, c) 5 o
i9, j9

* [ai, j; i1i9, j1j9 (zi1i9, j1j9 1 zi, j)
(25)

and2ai2i9, j2j9; i, j (zi, j 1 zi2i9, j2j9)].

Equations (23), (24), and (25) correspond to the differen- ai, j11; i, j 5
1

4d2 (ci11, j11 2 ci21, j11). (30.49)
tial forms

Comparing (30.1) with (30.29), and (30.3) with (30.49), we2As = ? v 5 0, (26)
see that equation (20) is not satisfied by the finite difference

J(z, c) 5 2 v ? =z, (27) scheme given by (4). The net false production of square
vorticity, due to the interaction between the grid points

and (i, j) and (i 1 1, j), and that between the grid points (i, j)
and (i, j 1 1), in this scheme, are

J(z, c) 5 2 = ? (vz). (28)

2(ai, j; i11, j 1 ai11, j; i, j) zi, j zi11, jThe form given by (24) may be called an ‘‘advective
form’’ and the form given by (25) may be called a ‘‘flux

5 2
1

2d2 [(ci11, j11 2 ci11, j21) 2 (ci, j11 2 ci, j21)] zi, j zi11, j ,form,’’ and both are identical in the non-divergent case.
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and Ji, j(z, c) 5 O
i0, j0

bi, j ; i1i0, j1j0 ci1i0, j1j0, (32)

2(ai, j; i, j11 1 ai, j11; i, j) zi, j zi, j11
where

5
1

2d 2 [(ci11, j11 2 ci21, j11) 2 (ci11, j 2 ci21, j)] zi, j zi, j11 .
bi, j; i1i0, j1j0 ; O

i9, j9
ci, j; i9, j9; i0, j0 zi1i9, j1j9 . (33)

These can be rewritten as
Corresponding to (18), we obtain

As (Di11/2, j11/2 1 Di11/2, j21/2) zi, j zi11, j , O
i0, j0

bi, j; i1i0, j1j0 5 0. (34)

and

Furthermore, corresponding to (20), the integral con-
2As (Di11/2, j11/2 1 Di21/2, j11/2) zi, j zi, j11 , straint, cJ(z, c) 5 0, which results in the conservation of

the kinetic energy in a closed domain, is simulated by
requiring thatwhere

bi1i0, j1j0; i, j 5 2bi, j; i1i0, j1j0 (35)
Di11/2, j11/2 ; 2

1
d 2 (ci11, j11 1 ci, j 2 ci, j11 2 ci11, j)

in the finite difference scheme. The usual difference
scheme, given by (4), does not satisfy this requirement andis a finite difference analogue of 2­2c/­x­y, which is a
therefore it does not conserve kinetic energy.component of the deformation tensor. Furthermore, the

For simplicity, let us now consider the following fourfalse production of square vorticity, for which Di11/2, j11/2
basic second order finite difference analogues for ais responsible, is expressed as
square grid:

As Di11/2, j11/2 (zi, j zi11, j 1 zi, j11 zi11, j11 2 zi, j zi, j11

J11
i, j (z, c) 5

1
4d 2 [(zi11, j 2 zi21, j) (ci, j11 2 ci, j21)2 zi11, j zi11, j11) 5 2Af Di11/2, j11/2 [(zi11, j 2 zi, j)2

1 (zi11, j11 2 zi, j11)2 2 (zi, j11 2 zi, j)2 2 (zi11, j11 2 zi11, j)2], 2 (zi, j11 2 zi, j21) (ci11, j 2 ci21, j)], (36)

J13
i, j (z, c) 5

1
4d2 [zi11, j(ci11, j11 2 ci11, j21)which is a finite difference analogue of the quantity

2 zi21, j(ci21, j11 2 ci21, j21)1
2

­2c

­x­y
d 2 FS­z

­xD2

2 S­z

­yD2G (31)
2 zi, j11(ci11, j11 2 ci21, j11)

1 zi, j21(ci11, j21 2 ci21, j21)], (37)
computed for the point (i 1 As, j 1 As). If higher order terms
in the grid size, d, are neglected, then the expression (31) J31

i, j (z, c) 5
1

4d2 [zi11, j11(ci, j11 2 ci11, j)gives a measure of the false production of square vorticity.
Whether the total square vorticity for the whole domain

2 zi21, j21(ci21, j 2 ci, j21)increases or decreases depends on whether the correlation
between ­2c/­x­y and (­z/­x)2 2 (­z/­y)2 is positive or 2 zi21, j11(ci, j11 2 ci21, j)
negative. However, solutions of the vorticity equation seem

1 zi11, j21 (ci11, j 2 ci, j21)], (38)to prefer a positive correlation. For example, where ­2c/
­x­y 5 ­v/­y 5 2­u/­x . 0, an eddy tends to shrink in

J33
i, j (z, c) 5

1
8d2 [(zi11, j11 2 zi21, j21) (ci21, j11 2 ci11, j21)the x-direction and stretch in the y-direction, causing the

magnitude of the vorticity gradient in the x-direction to
2 (zi21, j11 2 zi11, j21) (ci11, j11 2 ci21, j21)].be larger than the magnitude in the y-direction, and this

(39)gives a positive correlation.
The general form of the finite difference analogue of

the Jacobian at grid point (i, j), given by (15), may also be All four of these finite difference Jacobians maintain the
integral constraint given by (5) and all have the same orderrewritten as
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of accuracy, as we shall see in Section III. More general
ai, j11; i, j 5

1
4d2 Fa(ci11, j11 2 ci21, j11) 1 b(ci11, j 2 ci21, j)G,finite difference analogues for the Jacobian may be ob-

tained by linear combinations of these four basic Jacobians.
(41.49)Thus we put

ai11, j11; i, j 5
1

4d2 F2c(ci, j11 2 ci11, j) 2
d
2

(ci, j12 2 ci12, j)G,Ji, j(z, c) 5 a J11
i, j (z, c) 1 b J13

i, j (z, c)
(40)

1 c J31
i, j (z, c) 1 d J33

i, j (z, c), (41.69)

where a 1 b 1 c 1 d 5 1. ai21, j11; i, j 5
1

4d2 Fc(ci, j11 2 ci21, j) 1
d
2

(ci, j12 2 ci22, j)G.
For this Jacobian, we have

(41.89)

ai, j; i11, j 5
1

4d2 [a(ci, j11 2 ci, j21) 1 b(ci11, j11 2 ci11, j21)],
Comparison of (41.29) with (41.1), (41.49) with (41.3),
(41.69) with (41.5), and (41.89) with (41.7) reveals that(41.1)

a 5 b, d 5 0 (42)ai, j; i21, j 5
1

4d2 [2a(ci, j11 2 ci, j21) 2 b(ci21, j11 2 ci21, j21)],

(41.2) are required in order to satisfy (20). Thus, the scheme
a[J11

i, j (z, c) 1 J13
i, j (z, c)] 1 cJ31

i, j (z, c), where 2a 1 c 5 1
ai, j; i, j11 5

1
4d2 [2a(ci11, j 2 ci21, j) 2 b(ci11, j11 2 ci21, j11)], is a square vorticity conserving scheme.

In a similar way, it can be shown that
(41.3)

a 5 c, d 5 0 (43)
ai, j; i, j21 5

1
4d2 [a(ci11, j 2 ci21, j) 1 b(ci11, j21 2 ci21, j21)],

are required in order to satisfy (35). Thus, the scheme
(41.4) a[J11

i, j (z, c) 1 J31
i, j (z, c)] 1 bJ13

i, j (z, c), where 2a 1 b 5 1
is an energy conserving scheme.

ai, j; i11, j11 5
1

4d2 Fc(ci, j11 2 ci11, j) 1
d
2

(ci21, j11 2 ci11, j21)G, The scheme which satisfies both the conservation of
square vorticity and the conservation of energy is given by

(41.5)

a 5 b 5 c 5 Ad, d 5 0. (44)
ai, j; i21, j21 5

1
4d2 F2c(ci21, j 2 ci, j21) 2

d
2

(ci21, j11 2 ci11, j21)G,

By the choice of the coefficients a, b, c, and d, one can
(41.6) obtain, among others, the forms of the Jacobian in Table

I. The table shows which of these typical Jacobians, which
are sometimes used, satisfy J(z, c) 5 2J(c, z) or conserveai, j; i21, j11 5

1
4d2 F2c(ci, j11 2 ci21, j) 2

d
2

(ci11, j11 2 ci21, j21)G,
the mean square vorticity or the mean kinetic energy. Only
the linear combination [J11

i, j (z, c) 1 J13
i, j (z, c) 1 J31

i, j (z, c)]/(41.7)
3 will satisfy J(z, c) 5 2J(c, z) and also conserve both of
the quadratic quantities.

ai, j; i11, j21 5
1

4d2 Fc(ci11, j 2 ci, j21) 1
d
2

(ci11, j11 2 ci21, j21)G; This last scheme can be written as

(41.8)
Ji,j(z, c) 5 2

1
12d2 [(ci,j21 1 ci11,j21 2 ci,j11 2 ci11, j11)

From (41.2), (41.4), (41.6), and (41.8), respectively, we get
(zi11, j 2 zi,j) 1 (ci21,j21 1 ci,j21 2 ci21,j11 2 ci, j11)

(zi, j 2 zi21,j) 1 (ci11,j 1 ci11,j11 2 ci21,j 2 ci21, j11)
ai11, j; i, j 5

1
4d2 F2a(ci11, j11 2 ci11, j21) 2 b(ci, j11 2 ci, j21)G,

(zi, j11 2 zi,j) 1 (ci11,j21 1 ci11,j 2 ci21,j21 2 ci21, j)

(zi, j 2 zi,j21) 1 (ci11,j 2 ci,j11)(zi11,j11 2 zi,j)(41.29)
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TABLE I

Properties of Typical Jacobians

J11 1 J13 J13 1 J31 J31 1 J11 J11 1 J13 1 J31

J(z, c) ⇒ J11 J13 J31 2 2 2 3

J(z, c) 5 2J(c, z) ua u u

Square vorticity
u u u

conserved
Kinetic energy

u u u
conserved

a A check mark indicates that the property in the left-hand column is maintained.

1 (ci,j21 2 ci21,j) (zi, j 2 zi21,j21) 1 (ci,j11 2 ci21,j) J11(z, c) 5 J(z, c)

(zi21, j11 2 zi,j) 1 (ci11,j 2 ci,j21) (zi,j 2 zi11,j21)],
1

d2

6 F­z

­x
­3c

­y3 2
­z

­y
­3c

­x3 1
­3z

­x3

­c

­y
2

­3z

­y3

­c

­xG
(45)

1 O(d4), (47)

or J13(z, c) 5 J(z, c)

1
d2

6 F­z

­x
­3c

­y3 2
­z

­y
­3c

­x3 1
­3z

­x3

­c

­y
2

­3z

­y3

­c

­xJi,j(z, c) 5 2
1

12d2 [(ci,j21 1 ci11,j21 2 ci,j11 2 ci11, j11)

(zi11, j 1 zi,j) 2 (ci21,j21 1 ci,j21 2 ci21,j11 2 ci, j11) 1 3 S­z

­x
­3c

­x2­y
2

­z

­y
­3c

­x­y2D
(zi, j 1 zi21,j) 1 (ci11,j 1 ci11,j11 2 ci21,j 2 ci21, j11)

(zi, j11 1 zi,j) 2 (ci11,j21 1 ci11,j 2 ci21,j21 2 ci21, j) 1 3 S­2z

­x2 2
­2z

­y2D ­2c

­x ­yG1 O(d4), (48)

(zi, j 1 zi,j21) 1 (ci11,j 2 ci,j11)(zi11,j11 1 zi,j)
J31(z, c) 5 J(z, c)

2 (ci,j21 2 ci21,j) (zi,j 1 zi21,j21) 1 (ci,j11 2 ci21, j)

1
d2

6 F­z

­x
­3c

­y3 2
­z

­y
­3c

­x3 1
­3z

­x3

­c

­y
2

­3z

­y3

­c

­x(zi21, j11 1 zi,j) 2 (ci11,j 2 ci,j21) (zi,j 1 zi11,j21)].

(46)
2 3 S­c

­x
­3z

­x2­y
2

­c

­y
­3z

­x­y2D
Equations (45) and (46) correspond to the advective form
and the flux form of the Jacobian, given by (24) and (25),

2 3 S­2c

­x2 2
­2c

­y2D ­2z

­x ­yG1 O(d4), (49)respectively. The property of the Jacobian Ji, j(z, c) 5
2Ji, j(c, z), which requires that b 5 c, is automatically sat-
isfied.

where the subscripts i, j are omitted. Since our Jaco-
bian, denoted by J1(z, c) in this section, is given by
[J11(z, c) 1 J13(z, c) 1 J31(z, c)]/3, we have

III. ACCURACY OF THE DIFFERENCE SCHEME
J1(z, c) 5 J(z, c)

Since the finite difference scheme for the Jacobian, given
by (45) or (46), is a linear combination of the basic second

1
d2

6 F­z

­x
­3c

­y3 2
­z

­y
­3c

­x 3 1
­3z

­x 3

­c

­y
2

­3z

­y3

­c

­xorder finite difference schemes (36), (37), and (38), we can
expect that this scheme has an accuracy of the same order
as that of the basic schemes. Expanding z and c into Taylor 1 S­z

­x
­3c

­x2­y
2

­z

­y
­3c

­x­y2D1 S­2z

­x2 2
­2z

­y2D ­2c

­x ­y

(50)

series around the point (i, j), we have
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also conserves the square of vorticity and the energy. Here
J33(z, c) is defined by (39) and2 S­c

­x
­3z

­x2­y
2

­c

­y
­3z

­x­y2D2 S­2c

­x2 2
­2c

­y2D ­2z

­x ­yG
1 O(d4).

J31
i, j (z, c) 5

1
8d2 [zi11, j11(ci, j12 2 ci12, j)

To examine a phase error, we consider a simple 2 zi21, j21(ci22, j 2 ci, j22)
stream function

2 zi21, j11(ci, j12 2 ci22, j)

c 5 2UY 1 A sin kX, (51) 1 zi11, j21(ci12, j 2 ci, j22)], (57)

where (X, Y) are rectangular coordinates obtained by the J13
i, j (z, c) 5

1
8d2 [zi12, j(ci11, j11 2 ci11, j21)

rotation of the coordinate axis through the angle u. That is,
2 zi22, j(ci21, j11 1 ci21, j21)

2 zi, j12(ci11, j11 2 ci21, j11)
X 5 x cos u 1 y sin u

Y 5 2x sin u 1 y cos u
J. (52)

1 zi, j22(ci11, j21 2 ci21, j21)]. (58)

The vorticity is given by
The accuracy of J2(z, c) is given by

z 5 2Ak2 sin kX. (53)
J2(z, c) 5 J(z, c)

In a finite difference calculation, the vorticity is also ex-
1

d2

3 F­z

­x
­3c

­y3 2
­z

­y
­3c

­x3 1
­3z

­x3

­c

­y
2

­3z

­y3

­c

­xpressed in a finite difference form; but, here, the exact
form (53) is used in order to estimate the error resulting
only from the finite difference scheme for the Jacobian.

1 S­z

­x
­3c

­x2­y
2

­z

­y
­3c

­x­y2D1 S­2z

­x2 2
­2z

­y2D ­2c

­x ­yThe error in the usual scheme J11(z, c), given by (47), is

2 S­c

­x
­3z

­x2­y
2

­c

­y
­3z

­x­y2D2 S­2c

­x2 2
­2c

­y2DU
­z

­X
(kd)2

6
(cos4 u 1 sin4 u) 1 O(d4). (54)

­2z

­x ­yG1 O(d4). (59)By contrast, the error in the scheme J1(z, c), given by
(50), is

From (50) and (59), we see that 2J1(z, c) 2 J2(z, c) is a
fourth order approximation of the Jacobian; that is,U

­z

­X
(kd)2

6
(cos2 u 1 sin2 u)2 1 O(d4). (55)

2J1(z, c) 2 J2(z, c) 5 J(z, c) 1 O(d4). (60)
In the range 0 % u % f/2, the factor (cos4 u 1 sin4 u) in
(54) has the maximum value 1 at u 5 0 and u 5 f/2 and

IV. CURVILINEAR GRIDS ANDhas the minimum value 1/2 at u 5 f/4. On the other hand,
BOUNDARY CONDITIONSthe factor (cos2 u 1 sin2 u)2 in (55) is always 1, which means

the orientation error is removed in this case. Although the
Consider an orthogonal curvilinear coordinate system,error in this scheme is larger around u 5 f/4, it does not

(j, h). Define m and n asexceed the maximum value of the error in the ordinary
scheme.

There are many other schemes, in addition to J1(z, c), m 5
dj

(ds)j

, n 5
dh

(ds)h

, (61)
which conserve the square of vorticity and the energy. For
example, if we use the additional grid points (i 1 2, j),
(i 2 2, j), (i, j 1 2), and (i, j 2 2), and other scheme, where (ds)j is the increment of distance for a change of dj
J2(z, c), defined by in j, and (ds)h is the increment of distance for a change of

dh in h. The wind components in the j-direction and h-
direction areJ2(z, c) 5 Ad [J33(z, c) 1 J31(z, c) 1 J13(z, c)], (56)
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indices i, j as j 5 id and h 5 h0 1 jd. The boundaries are
u 5

1
m

dj

dt
, v 5

1
n

dh
dt

, (62) j 5 0 and j 5 J.
If the finite difference scheme derived in Section II is

used for the term on the right in (67) at the inner gridrespectively. Divergence and vorticity are
points, then

= ? v 5 mn F ­

­j
Su

nD1
­

­h S v
mDG, (63)

­

­t S z

mnDi, j
5 Ji, j(z, c) (69)

and

for j 5 1, 2, . . . , J 2 1, where Ji, j(z, c) is given by (46).
k ? = 3 v 5 mn F ­

­j
Sv

nD2
­

­h Su
mDG. (64) The area represented by the grid point (i, j) is (d2/mn)i, j.

Consider, first, the case where m is finite at the boundary.
Let the areas represented by the grid points (i, 0) andThe vorticity equation (1) becomes
(i, J) be (d2/2mn)i,0 and (d2/2mn)i,J , respectively.

For example, let us consider the boundary j 5 0. Since
­z

­t
5 2mn Fu

n
­z

­j
1

v
m

­z

­hG. (65) the scheme given by (69) is used at grid point (i, 1), and
the general form of the vorticity and the square vorticity
conserving scheme can be written as (25), we can write

Since = ? v 5 0 in two-dimensional incompressible flow,
we define a stream function by

­

­t S1
2

z

mnDi,0
5 ai,0; i11,0(zi,0 1 zi11,0) 2 ai21,0; i,0(zi21,0 1 zi,0)u

n
5 2

­c

­h
,

v
m

5
­c

­j
. (66)

2
1

12d2 [(ci11,0 1 ci11,1 2 ci21,0 2 ci21,1)

(70)
The vorticity equation (65) can be rewritten as

(zi,0 1 zi,1) 1 (ci11,0 2 ci,1) (zi,0 1 zi11,1)
­

­t S z

mnD5
­

­t F ­

­j
Sv

nD2
­

­h Su
mDG5 J(z, c), (67) 1 (ci,1 2 ci21,0) (zi21,1 1 zi,0)].

where Corresponding to (18) we have

J(p, q) 5
­p
­j

­q
­h

2
­p
­h

­q
­j

. (68) (ai,0; i11,0 2 ai21,0; i,0)
(71)

2
1

12d2 [2ci11,0 2 2ci21,0 1 ci11,1 2 ci21,1] 5 0.The integral constraints (5), (6), and (7) hold for this
Jacobian, if the bar is redefined as the average over the
domain in the (j, h) plane. We see from (67) that the
conservations of mean vorticity, z/mn, mean square vortic- As ci,0 does not depend on i, (71) can be rewritten as
ity, z2/mn, and mean kinetic energy, (u2 1 v2)/2mn, in a
closed domain, along the boundary of which c is constant,
again result from these integral constraints on the Jacobian. ai,0; i11,0 2

1
12d2 (ci,1 1 ci11,1 2 ci,0 2 ci11,0)

(72)Therefore, for a square grid, in the j, h plane, which has
the grid interval Dj 5 Dh 5 d, the same difference scheme

5 ai21,0; i,0 2
1

12d2 (ci21,1 1 ci,1 2 ci21,0 2 ci,0).that was derived above can be applied to the right-hand
side of (67).

In order to maintain the integral constraints in a
bounded domain, the boundary must be treated properly. Since the right-hand side of (72) is obtained by replacing

i by i 2 1 in the left-hand side of (72), the quantityFor simplicity, let us consider a domain, bounded by the
coordinate lines h 5 h0 and h 5 hJ 5 h0 1 Jd. A cyclic ai,0; i11,0 2 (ci,1 1 ci11,1 2 ci,0 2 ci11,0)/12d2 is a constant

which does not depend on i. Because the right-hand sidechange is assumed in the j-direction. If the domain is
closed, in the sense that (v/m)h5h0

and (v/m)h5hJ
are zero, of (70) must approach 2(u/2n)(­z/­j), it can be shown

that the constant must be zero.c is constant along each of the boundaries. We define
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Equation (70) becomes Su
nDi, j11/2

5
1
d

(ci, j 2 ci, j11), (77)

­

­t S1
2

z

mnDi,0 S v
mDi11/2, j

5
1
d

(ci11, j 2 ci, j). (78)

5 2
1

12d2 [(ci,0 1 ci11,0 2 ci,1 2 ci11,1) (zi,0 1 zi11,0)
From (75) and (76), we can put

2 (ci21,0 1 ci,0 2 ci21,1 2 ci,1)(zi21,0 1 zi,0)
(73)

1 (ci11,0 1 ci11,1 2 ci21,0 2 ci21,1) (zi,0 1 zi,1) O
i

­

­t S1
2

z

mnDi,0
5 2

1
d Oi

­

­t Su
mDi,1/2

, (79.1)

1 (ci11,0 2 ci,1) (zi,0 1 zi11,1)

O
i

­

­t S1
2

z

mnDi,J
5

1
d Oi

­

­t Su
mDi,J21/2

. (79.2)1 (ci,1 2 ci21,0) (zi21,1 1 ji,0)],

where
It can be shown that the integral constraint cJ(z, c) 5

0 is also maintained if this mean is replaced byci,0 5 C0 , (739)

for all i. O
i
F1

2
ci,0 Ji,0(z, c) 1 OJ21

j51
ci, j Ji, j(z, c) 1

1
2

ci,J Ji,J(z, c)G,
Similarly, we obtain

where As Ji,0(z, c), Ji, j(z, c) and As Ji, J(z, c) are given by the­

­t S1
2

z

mnDi,J right-hand sides of (73), (46), and (74), respectively. The
finite difference expression for the conservation of the
kinetic energy, in this scheme, is written as5 2

1
12d2 [(ci,J21 1 ci11,J21 2 ci,J 2 ci11,J) (zi,J 1 zi11,J)

2(ci21,J21 1 ci,J21 2 ci21,J 2 ci,J) (zi21,J 1 zi,J)
(74) 2O

i
Fci,0

­

­t S1
2

z

mnDi,0
1 OJ21

j51
ci, j

­

­t S z

mnDi, j2 (ci11,J21 1 ci11,J 2 ci21,J21 2 ci21,J)(zi,J21 1 zi,J)

2 (ci,J21 2 ci21,J) (zi21,J21 1 zi,J) 1 ci,J
­

­t S1
2

z

mnDi,J
G

2 (ci11,J 2 ci,J21) (zi,J 1 zi11,J21)],

5
1
d Fci,0 O

i

­

­t Su
mDi,1/2

2 O
i
OJ21

j51
ci, j H­

­t Sv
nDi11/2, jwhere

ci,J 5 CJ , (749)
2

­

­t Sv
nDi21/2, j

1
­

­t Su
mDi, j21/2

2
­

­t Su
mDi, j11/2

J
for all i. C0 and CJ are functions of time only.

The conservation of vorticity takes the form 2 ci,J O
i

­

­t Su
mDi,J21/2

G
O

i
F­

­t S1
2

z

mnDi,0
1 OJ21

j51

­

­t S z

mnDi, j
1

­

­t S1
2

z

mnDi,J
G5 0. 5

1
d Oi

FOJ21

j50
(ci, j 2 ci, j11)

­

­t Su
mDi, j11/2

(75)

1 OJ21

j51
(ci11, j 2 ci, j)

­

­t Sv
nDi11/2, j

GConsider, now, the finite difference analogues of the
vorticity, z, and the wind components, u and v, given by

5 O
i
FOJ21

j50

­

­t S1
2

u2

mnDi, j11/2
1 OJ21

j51

­

­t S1
2

v2

mnDi11/2, j
G5 0.S z

mnDi, j
5

1
d FSv

nDi11/2, j
2 Sv

nDi21/2, j (80)

Equations (73), (74), (739), (749), (79.1), and (79.2) com-1 Su
mDi, j21/2

2 Su
mDi, j11/2

G (76)
pletely define the boundary conditions. In the simple case
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when m and n are functions of j only, it is convenient to for all i, where z0 and C0 are functions of time only. I is
the number of grid points on the line h 5 h0 1 d and «d2divide the stream function into two parts,
denotes the area represented by the singular point. In
addition, (79.1) must be replaced byci, j 5 Cj 1 c9i, j , Cj 5 ci,

i

j , (81)

where ( )
i

denotes the mean in i and the prime denotes ­

­t
(« z0) 5 2

1
d O

I

i51

­

­t Su
mDi,1/2

(88)
the deviation. Now, let mi,j 5 mj and ni, j 5 nj . From (79.1)
and (79.2), we get

5 2
1
d2 OI

i51

­

­t Sn
mDi,1/2

(C0 2 ci,1).
­

­t
(C0 2 C1) 5 2d2 Sm

nD1/2

­

­t S1
2

z

mnD
i

i,0
, (82)

Equations (87), (879), and (88) completely define the condi-
tions at the singular point.

­

­t
(CJ21 2 CJ) 5 d2 Sm

nDJ21/2

­

­t S1
2

z

mnD
i

i,J
, (83)

V. CONCLUSION

It was shown that in two-dimensional incompressiblewhere the time derivatives in the right-hand sides are given
by (73) and (74). At the inner points, 0 , j , J, we have flow some of the integral constraints on quantities of physi-

cal importance, such as the conservation of mean kinetic
energy, mean square vorticity, (and mean vorticity itself),­

­t FSn
mDj21/2

(Cj21 2 Cj) 2 Sn
mDj11/2

(Cj 2 Cj11)G
(84)

can be maintained if the finite difference analogue for the
advection term is properly designed.

Since the required constraints are on the advection term,
5 d2 ­

­t S z

mnD
i

i, j
. which has the form of a Jacobian operator for the flow

considered, the finite difference scheme for the Jacobian
must have a certain restricted form. Based upon a consis-For the deviation part, we have
tent interaction between grid points, a general form of
finite difference Jacobian, which maintains the integral
constraints, was derived. Examples were given for the sec-­

­t FSn
mDj—1/2

(c9i, j21 2 c9i, j) 2 Sn
mDj11/2

(c9i, j 2 c9i, j11)
ond-order nine-point scheme and the fourth-order thir-
teen-point scheme. The boundary conditions at a wall, and
the conditions at a singular point in a curvilinear grid,1 Sn

mDj
(c9i11, j 1 c9i21, j 2 2c9i, j)G5 d2 ­

­t S z

mnD9

i, j
(85)

which satisfy the integral constraints, were also indicated.
When the quadratic quantities are conserved in a finite

for 0 , j , J, and difference scheme, nonlinear computational instability
cannot occur. This follows from the fact that if the square
of a quantity is conserved with time when summed up overc9i,0 5 0, c9i,J 5 0. (86)
all the grid points in a domain, the quantity itself will be
bounded, at every individual grid point, throughout theThe time derivatives on the right-hand sides of (84) and
entire period of integration.(85) are given by (69).

Phillips [2] attributed the cause of nonlinear computa-If m becomes infinite at h 5 h0 , then h 5 h0 becomes
tional instability to ‘‘aliasing,’’ or misrepresentation of ana singular point, like the pole in a polar coordinate system.
unresolvable short wave by a resolvable longer wave in theIn this case, (73) must be replaced by
computed time derivative of the stream function. However,
aliasing does not necessarily mean a false production of

­

­t
(« z0) 5 2

1
12d2 OI

i51
[(ci11,0 1 ci11,1 2 ci21,0 2 ci21,1) energy. Whether amplification does or does not occur de-

pends on the phase relation between the misrepresented
wave in the time derivative and the wave which is al-(z0 1 zi,1) 1 (ci11,0 2 ci,1) (z0 1 zi11,1) (87)
ready present.

1 (ci,1 2 ci21,0) (zi21,1 1 z0)] Aliasing does exist in the finite difference scheme devel-
oped in this paper. It may appear as a phase error or as a

and distortion of the spectral distribution of energy. But the
total energy and the average scale of the motion is free

ci,0 5 C0 (879) from aliasing error in this scheme.
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Lilly [9] compared the aliasing error with first derivative called ‘‘primitive equations.’’ This scheme is being used for
numerical experiments with the Mintz–Arakawa generalerrors in a limited component wave system. He used the

difference scheme given by (45) and found that the aliasing circulation model [12].
The higher order scheme, derived in Section III, is beingerror was smaller than the first derivative errors. If a uni-

form or large-scale flow is superposed on such a limited used for quasi-geostrophic numerical weather predictions,
on an operational basis in Japan [13].component wave system, as is often done, the first deriva-

tive errors become even more serious, while there is no The scheme which conserves the mean kinetic energy,
but not the mean square vorticity, (Eq. (37)), has beenadditional aliasing error. The higher order scheme, derived

in Section III, will decrease the first derivative errors con- used by Lilly [14] for two-dimensional convection studies,
and by Bryan [15] for ocean current calculations.siderably.

A numerical example, which uses the scheme derived A scheme which conserves the mean square vorticity,
but not the kinetic energy, was independently derived byin this paper, will be given in Part II of this paper. Compari-

sons will be made, there, with the results obtained with Fromm [16] and has been used by him for computing two-
dimensional viscous flow.the usual space difference scheme, showing not only the

stability of the two schemes but also their influence on the
spectral distribution of kinetic energy and the frequency ACKNOWLEDGMENTS
distribution of vorticity. The time-differencing problem
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