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Dispersion relations are obtained for Rossby waves on Arakawa
grids A~E. The discretization accuracy is compared for both inertia~
gravity and Rossby waves in terms of “domains of accuracy” for
a given level of percentage error. In particular, the B-grid appears
to be suparior to the C-grid for the case of both resolved and under-
rosolved Rossby radius. This is in contrast Lo tha well-known situa-
tion for inertia—gravity waves where the B-grid is inferior for the
case of resolved Rossby radius.  ® 1995 Academic Press, inc.

1. INTRODUCTION

Winningholt [1] and Arakawa and Lamb [2] analyzed the
dispersion error for the numerical discretization of inertia—
gravity waves on five different grids, which have become
known as the Arakawa A~E grids (Fig. 1) in the meleorojogical
and oceanographic literature. The behavior of waves on differ-
ent Lypes of finite-difference grids gives great insight into the
choice of a particular nwmerical grid and provides useful infor-
mation about the suitability and accuracy of a grid for various
types of problems. This subject has been of continuing interest
as evidenced by the works of Batteen and Han [3{, Song and
Tang {4], and Randall {5}, for example, who all considered
inertia—~gravity waves. However, it is not always clear that the
choice of inertia—~gravity waves is hest for this type of analysis.
Inertia—gravity waves are essential only in the process of
geostrophic adjustment, Perhaps of equal it not greater interest
are the Rosshy (or planetary) wave dynamics which occur
following e process of geostrophic adjustment. One is inter-
ested in Rossby wave dymamics to the extent that atmospheric
or oceanic flows can be well represented by a quasi-geostrophic
model, which is often the casc. However, Rossby waves in the
atmosphere are typically well resolved by the mesh, This is
not so in the oceanic case where even the highest resolution
compuiations currently do not resolve the first baroclinic
Rossby radius. Thos, it is important and useful to analyze mesh
effects for both inertia—gravity as well as Rossbhy waves.

The dispersion analysis for Rossby waves is not quite as
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straightforward as it is for inertia—gravity waves. Finite-differ-
ence Rosshy wave dispersion relations for the B and C grids
have been analyzed by Wajsowicz [6]. In this note we complete
the analysis by giving analytic expressions and graphical repre-
sentations for the discrete dispersion relations for all five grids
andl for botly inertin—gravity and Rossby waves, and we present
a novel comparison ol the errors in terms of the ““domains of
accuracy.” The analytical dispersion relations may then be
used for further analysis, if so desired.

2. INERTIA-GRAVITY (POINCARE) WAVES

Here we review the now classic results in Arakawa and Lamb
{2] and elsewhere. The linearized shallow water equations
which describe inertia—gravity waves on an f~plane are given by

du—fu+gah=0,
du+fut+goh=0, . )
ah+ H(du+ a,0) =0,

where (1, ) are the horizontal velocity components, and I is
the displacement from a constant depth H. Assuming plane
waves of the form i ~ ™00 we obtain the continuum
{exact) dispersion relationship
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(‘—’—’_) =1+ (5) [(ked)? + (Ied) ). (2)
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where (k, 1) are the horizontal wavenumbers in the zonal (x)
and meridional (y) directions, respectively, A = VgH/fis the
Rosshy radius of deformation, and d is the mesh spacing as per
Fig. 1. The corresponding numerical dispersion relationships,
using the obvious discretization for each of the five grids, are

(2)2 =1+ (ﬁ)z[sinlkd + sin? Id] (3a)
7). I sin? Id],
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h Y " wvooohouy Figures 2 and 3 plot the two-dimensional dispersion relations
¥IG. 1. Definition of Arakawa grids A-E, assuming a square grid. Here for the cases Md = 2 and Md = 1/2, respectively, for the

u, v are the horizontal velocity components, # is the vertical displacement,

and 4 is the mesh spacing.

exact case, as well as for the five grids. The same plots for the

case A/d = 2 are also given by Randall [5]. The origin, or the
region where the discrete and exact dispersion relationships
coincide, is at the lower left-hand corner. We show only the

FIG, 2. Nondimensional frequency (w/f)* for inertia-gravity waves plotted using Eqs. (2} and (3a)-(3e) with resolved Rosshy radius, A/d = 2. The
admissibility region for grids A-D is the square region (kd/m, ld/m) < 1 and for the E grid it is the triangular region kd/w + ldin < V2,
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FIG. 3. Nondimensional frequency (e/f) for inertia—gravity waves plotted using Egs. (2) and (3a)—(3e) with under-resolved Rossby radius, Md = 1/2.
The admissibility region is the same as in Fig. 2.
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FIG. 4. Contour lines of 10 error in frequency for inertia—gravity wave dispersion reiations on Arakawa A—E grids within their admissibility regions.
The region from the origin up to the contour line for a particular grid constitutes the *‘domain of accuracy’” for that grid.
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FIG. 5.
region is the same as in Fig. 2.

upper right-hand quandrant in the %, { plane; the remaining
quadrants may be constructed by symmetry.

[t is useful to define the region of resolvable wavenumbers
for these plots, or the so-called ‘‘admissible region™ [7] in
wavenumber space. The admissible region for grids A-D is
the square region defined by k, [ < w/d, and for grid E it is
the triangular region defined by k + { < V2u/d (e.g., [2, 5,
71). Combining all four quadrants of the k, ! plane, the admissi-
ble region for all grids is seen to be a square with side length
2a/d, but with the E grid region rotated by 45°, as is to be
expected, because the E grid is the same as the B grid, except
rotated by 45°. For convenience, we have displayed the same
region, &, I << w/d, for all grids. Note the ‘‘null spaces™ associ-
ated with the discrete spatial operators for the A and B grids
at the corners of the display box in Figs. 2 and 3, with (k, 1)
equal to (0, w/d), (m/d, 0), and (w/d, w/d). These represent
spurious nonphysical modes, such as the *‘checkerboard”

(D)

(E)

Noadimensional frequency w/Bd for Rossby waves plotted using Eqgs. (5) and (6a)-(6e) with resolved Rossby radins. A/d = 2. The admissibility

mode, which undergo only inertial oscillations and often ac-
count for the computational ‘‘noise’” observed in calculations.
The C-grid is notable for the absence of such modes.

It is not easy to compare the accuracy of the discretizations
solely on the basis of Figs. 2 and 3. Arakawa and Lamb [2] in
part compared the five grids on the basis of the size of the
region in which the phase and group velocities are in the same
direction (as in the exact case), but this is not general. In Fig.
4 we plot the 10% error contour for each of the grids, where
the error is defined as E = |(w — @g)/w|. Here w is the exact
frequency from (2) and wg; is a grid frequency from {3a)-(3e).
The region of parameter space containing both the contour line
and the origin defines the ‘*domain of accuracy™ in which the
accuracy is better than the chosen level, in this case 10%. This
type of presentation allows one to visually judge the different
grids based on the size and shape of the domain of accuracy.
We confirm the original Arakawa and Lamb [2] conclusion
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FIG. 6. Nondimensional frequency w/Bd for Rossby waves plotted using Eqs. {(5) and (6a)—(6e) with under-resolved Rossby radius, A/d = 1/2. The

admissibility region is the same as in Fig. 2.

that the C-grid is best among the five grids for modelling
geostrophic adjustment in the resolved case (A/d = 2), while
the B and E grids are better in the under-resolved case (Ad =
1/2). Note that because inertia—gravity waves are isotropic
with respect to direction, both the dispersion relations and the
domains of accuracy for the B and E grids are the same, except
for a rotation by 45°,

3. ROSSBY (PLANETARY) WAVES

Rossby waves in the quasi-geostrophic, S-plane approxima-
tion (Gill [8]) are given by

Ju,—gd.h, =0,
fug + gayhg =0,

(4a)

and

r'),ug _fl_}a - Bugy =0,

A+ fu, + Bugy =0, {4b)

dhy+ H@, + 3,0,) = 0,

where u,, U, i, are the geostrophic, u,, v, are the ageostrophic
components of velocity and displacement, y is the meridional
distance, and & = d,f. Both f and & are assumed constant.

Again, assuming plane waves, we obtain the continuum (ex-
act) dispersion relationship

o _ ~(\d)’ kd )
Bd 1+ (NMd) [(kd)* + (d)*)
The corresponding numerical dispersion relationships are
(g) ___—(Md)*sin kd cos Id (&)
Bd/a |+ (NP [simkd + sin’ Id]’
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FIG.7. Contour lines of 10% error in frequency for Rossby wave dispersion relations on Arakawa A—E grids within their admissibility regions. The region
between the origin in the upper right-hand corner up to the contour line constitutes the **domain of accuracy’ for a particular grid.

(2) _ —(A/d)* sin kd
Bd)s 1+ 2(Nd)'[1 — cos kd cos ld]’

(6b)

(ﬂ) 3 — (M d)* sin kd cos? (1d12)
Bd/c  cos? (kdi2)cos? (id/2) ’
+ 4 (Md)? [sin? (kd/2) + sin? ({d/2)]

{(6c)

(ﬂ) _ —(A/d)* sin kd cos® (Id/2)
Bd/o 1 +4(\d)y[sin’ (kd/2) + sin’ (d/2)]’

(6d)

3) = V2(\d)?sin (kd/NV/2) cos (1dIV2)
Bd/s 1+ 2(Nd) [sin?(kd/\/2) + sin® ({dIvV2)]

(6e)

Figures 5 and 6 plot the two-dimensional dispersion relation-
ships for the cases Md = 2 and Md = 1/2, respectively, for
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all five grids and the exact case. Note that the origin is now
in the upper right-hand corner. These waves propagate in a
westwardly direction only (we therefore display only the lower
left-hand quadrant in the &-/ plane; the upper left-hand quadrant
may be constructed by symmetry).

Figure 7 shows the 10% domains of accuracy for Rossby
waves. In this case the B grid appears to be superior to the C
grid for both resolved (A/d = 2) and under-resolved (A/d =
1/2) cases, except for a relatively small region containing long
meridional and intermediate zonal wavelengths. The C-grid
domain is more isotropic, however. Note that the D grid gives
the worst accuracy, both here and in Fig. 4. Figure 8 shows
the 30% domains of accuracy; note that the size of the domains
is expanded but that conclusions regarding the relative effec-
tiveness of the different grids remain unchanged. This time,
because Rossby waves are not isotropic with respect to direc-
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FIG. 8. Same as 7, except for 30% error contours.
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