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ABSTRACT

The multidimensional advection schemes described in this study are based on a strictly conservative flux-
based control-volume formulation. They use an explicit forward-in-time update over a single time step, but there
are no ‘‘stability’’ restrictions on the time step. Genuinely multidimensional forward-in-time advection schemes
require an estimate of transverse contributions to each face-norma! flux for stability. Traditional operator-splitting
techniques based on sequential one-dimensional updates introduce such transverse cross-coupling automatically;
however, they have serious shortcomings. For example, conservative-form operator splitting is indeed globally
conservative but introduces a serious ‘‘splitting error’’; in particular, a constant is not preserved in general
solenoidal velocity fields. By contrast, advective-form operator splitting is constancy preserving but not conser-
vative. However, by using advective-form estimates for the transverse contributions together with an overall
conservative-form update, strictly conservative constancy-preserving schemes can be constructed. The new meth-
ods have the unrestricted-time-step advantages of semi-Lagrangian schemes, but with the important additional
attribute of strict conservation due to their flux-based formulation. Shape-preserving techniques developed for
small time steps can be incorporated. For large time steps, results are not strictly shape preserving but, in practice,
deviations appear to be very slight so that overall behavior is essentially shape preserving. Since only one-
dimensional flux calculations are required at each step of the computation, the algorithms described here should
be highly compatible with existing advection codes based on conventional operator-splitting methods. Capabil-

VoLuMmE 124

ities of the new schemes are demonstrated using the well-known scalar advection test problem devised by

Smolarkiewicz.

1. Intreduction

Consider the pure advection equation for a volume-
specific scalar ¢ in a constant-density fluid with a
known velocity field v,

9¢ + V- (v¢) = 0.

Ot M
A practical scheme will need to successfully handle
diffusion, source terms, nonconstant densities, and un-
steady velocities; but simulation of Eq. (1), even in the
seemingly simple case of steady two-dimensional di-
vergence-free flow using a uniform square computa-
tional grid, still represents one of the main bottlenecks
to progress.
An advection scheme should possess a number of
useful attributes. We prefer to work with an explicit
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forward-in-time update over a single time step; this is
achieved in principle by averaging Eq. (1) in time over
At. In many cases, explicit schemes can be constructed
without restrictions on the time step, other than those
dictated by accuracy considerations; the so-called CFL
condition is, in fact, irrelevant (Leonard 1994; Leonard
et al. 1995a). A finite-volume flux-based formulation
is obtained in principle by integrating Eq. (1) over a
control volume (in addition to averaging over Az); this
means that the updated quantity is the (control-vol-
ume) cell average of ¢. In this case, conservation is
guaranteed by face flux uniqueness—the flux leaving
a given control-volume cell through a particular face is
then identical to the flux entering the adjacent cell
through that face. In a solenoidal (although perhaps
highly deformational) velocity field, an initially ho-
mogeneous scalar governed by Eq. (1) should remain
identically equal to the initial constant value every-
where; we call this the constancy condition. [ Schemes
based on conservative-form operator splitting violate
this condition; the resulting ‘‘splitting error’’ can be
quite substantial, leading to a phenomenon we call
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“lumpiness.”’ ] In an explicit forward-in-time multidi-
mensional update for unsteady flow, one cannot merely
add one-dimensional contributions to the net flux in
each face-normal direction simultaneously; the result-
ing scheme would be unstable in general —a genuinely
multidimensional forward-in-time algorithm requires
estimates of transverse contributions to each face flux
as well. It is also important to be able to structure the
algorithm to include high formal accuracy; although the
cost of a higher-order method is greater (per space—
time grid point), the concomitant increase in accuracy
more than offsets the larger cost, thereby greatly en-
hancing computational efficiency. We recommend for-
mal third-order accuracy as a minimum, and prefer to
work with nominally fifth- and higher- (odd) order
schemes in some cases. Finally, an advection scheme
should be shape preserving; it should not accentuate
local extrema (although it should not unphysically
“clip” extrema either). Unsophisticated advection
schemes tend to produce unphysical undershoots
(overshoots) and numerical oscillations in regions in-
volving sudden changes in gradient of the advected
variable; avoidance of this anomalous behavior is re-
lated to questions of shape preservation in the subcell
interpolation used in calculating advective fluxes.

An advection algorithm possessing all of the attri-
butes mentioned would, indeed, be highly attractive.
Unfortunately, it seems difficult to satisfy all criteria
simultaneously. Good progress has been made with ex-
plicit one-dimensional advection schemes, with exten-
sion to flux-based conservative unrestricted-time-step
formulations occurring quite recently. One example is
our NIRVANA strategy (Leonard et al. 1995a); see
also Roache (1992) and Leonard (1994). Many mul-
tidimensional schemes are based on unsophisticated
operator-splitting methods using successive one-di-
mensional updates in each coordinate direction sequen-
tially. If conservative-form (sometimes called flux
form) one-dimensional operators are used for each di-
rection, the overall multidimensional update is indeed
globally conservative but does not preserve constancy.
In a general case, quite large splitting errors may be
introduced and in some cases (e.g., steady deforma-
tional advection fields), this can lead to an unstable
secular growth of local errors. Shape preservation also
suffers for related reasons. By contrast, entirely advec-
tive-form operator splitting (described in detail below)
preserves constancy automatically, and one-dimen-
sional shape-preserving operators maintain shape pres-
ervation in multidimensions as well—even for arbi-
trarily large Ar. Unfortunately this technique is not
conservative.

In recent years, explicit semi-Lagrangian methods
(see the review by Staniforth and C6té 1991) have had
a rapid rise in popularity due primarily to their lack of
time-step restrictions (other than those related to ac-
curacy considerations). By using appropriate interpo-
lation for the so-called departure point, these tech-
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niques can be highly accurate and shape preserving.
However, once again, semi-Lagrangian methods are
not inherently conservative.

A number of conservative explicit genuinely multi-
dimensional forward-in-time advection schemes have
been developed in the past (Dukowicz and Ramshaw
1979; Smolarkiewicz 1984). In recent years, multidi-
mensional advection schemes have been extended to
higher-order accuracy (Ekebjerg and Justesen 1991;
Rasch 1994; H6lm 1995), some with consistently for-
mulated higher-order diffusion terms as well, such as
our flux-integral method (Leonard et al. 1995b). These
particular schemes all have time-step restrictions equiv-
alent to requiring component Courant numbers to be
generally less than O(1), plus additional diffusive
time-step constraints. They can be rendered shape pre-
serving by using multidimensional flux limiters (Leon-
ard et al. 1993; H6lm 1995; Thuburn 1996).

We recently combined elements of our flux-integral
method with NIRVANA concepts resulting in the
ENIGMATIC code (Leonard et al. 1995c), a conser-
vative explicit unrestricted-time-step genuinely multi-
dimensional constancy-preserving scheme. It is not
possible to develop a strictly shape-preserving version
of ENIGMATIC for large At and general deforma-
tional velocity fields; however, in most cases of prac-
tical interest, lack of shape preservation appears to be
minimal. We call this behavior essentially shape pre-
serving (ESP).

The advection schemes described in the present pa-
per have the same general properties as ENIGMATIC.
They are, however, somewhat more straightforward
conceptually, being based on principles closely related
to operator splitting. In fact, the resulting advection
schemes should be highly compatible with codes cur-
rently using conventional operator-splitting techniques.

While the present manuscript was under review, the
very recent paper by Lin and Rood (1996 ) was brought
to our attention. The general principles of the method
described in that paper are essentially the same as some
of those outlined here: using combinations of advec-
tive-form and conservative-form operator splitting.
Differences occur in the details of implementation, es-
pecially in the one-dimensional flux-difference calcu-
lations and the treatment of transverse velocity com-
ponents.

The following section outlines the general principles
of constructing finite-volume formulations. Section 3
summarizes operator-splitting techniques, and secticn
4 introduces an operator notation for flux-difference
splitting. The construction of schemes that are both
conservative and constancy preserving is outlined in
section 5, with extension to three dimensions in section
6. Questions of shape preservation are considered in
section 7 and computational efficiency is discussed in
section 8. Conclusions and suggestions for further de-
velopment are given in section 9.
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2. Explicit update equation

The basic forward-in-time explicit update algorithm
for cell-average values is obtained by averaging Eq. (1)
over a single time step Az and integrating over a finite-
volume cell of volume V. Using Gauss’s divergence
theorem, this results in

" - ¢

V(T) = —zf;AfchE?x 2)

where bars signify cell-average values, the plus-sign
superscript indicates the updated value, A, is a finite-
volume face area, v, represents the outward normal
component of advecting velocity, ¢,is an instantaneous
face value, the angle brackets represent surface aver-
ages over individual faces, and the tilde refers to the
time average over At. This equation is exact.

A fundamental approximation usually assumes that
the instantaneous advecting velocity component and
advected scalar are uncorrelated with respect to the av-
eraging operations; that is,

() ~ )Py (3)

This is clearly questionable when ¢ is a strong function
of velocity (e.g., advection of momentum, vorticity,
etc.); however, it appears to be a less serious approxi-
mation in general compared to others involved in the
final form of the overall algorithm.

The primary task (and this is common to many ex-
plicit advection scheme constructions) is to make an
estimate of the ‘‘effective’” face value of ¢, given a
knowledge of all cell-average values up to the current
time level; that is,

6 ~ (). (4)

Onge this is achieved, the explicit update equation be-
comes

(7)+ - (7) + Zc}n ;ff _ z C})uld);:_ff (5)

out

introducing inflow and outflow Courant number normal
components. The steady, constant-density continuity
equation (discrete solenoidal condition) then becomes,
for each cell,

Y- =0. (6)

out

_ To construct a conservative advection algorithm for
¢, it is important that both the advecting normal veloc-
ity components and the advected effective scalar face
values be unique to the particular face in question (in-
dependent of which control-volume cell they are re-
lated to). This is usually the case for the effective face
values. The fundamental difference between ‘‘conser-
vative-form’” and ‘‘advective-form’’ formulations is in
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the treatment of the velocities (Smolarkiewicz and .
Rasch 1991). In the conservative form, the velocity
components are indeed unique to each face, as de-
scribed above. In the advective form, the velocities
used are unique to particular control-volume cells
rather than to individual faces. In general, for an ad-
vective-form algorithm, an inflow velocity on a partic-
ular face relative to the adjacent downstream cell will
not be the same as the outflow velocity on that face
relative to the adjacent upstream cell. Thus, fluxes are
nonunique and conservation is destroyed.

Consider the simplest possible case of steady two-
dimensional solenoidal flow, using a uniform square
grid of mesh width #. The explicit update in conser-
vative form is then '

$t =P + Codd — T + S — ¢, (T)

using standard compass-point notation and defining in-
dividual face Courant number normal components as
Cow = U, At/h, etc. The corresponding advective-form
update can be written

¢ =+ (PN — ¢ + 5 (DS — o), (8)

where the notation implies that the velocity compo-
nents are unique to particular cells (although not nec-
essarily cell centered). _

If ¢ is initially homogeneous (= ¢, say), any ‘‘rea-
sonable’’ advection scheme would be expected o es-
timate all effective face values as being identically
equal to ¢, as well. Since the continuity equation in
this case is

Cow ™™ Cxe + cys -

¢ =0, 9)

this means that the conservative-form multidimen-
sional update, Eq. (7), automatically preserves con-
stancy, as it should. The advective form, Eq. (8), does
too—simply because the individual component face-
value contributions cancel. In a more general case in-
volving variable ¢, the advective form is not conser-
vative because of nonuniqueness of face fluxes.

3. Operator-splitting schemes

To construct a specific algorithm, one might try to
estimate the effective face values in Eq. (7), say, with
some reliable one-dimensional formulas (based on the
current ¢ values) in each coordinate direction; that is,
a simple-minded update of this type might be written

biw =& + P (P) — (D)

+cuhi®(d) = cui(P). (10)
However, except for the first-order (donor-cell)
method, this equation is unstable—apart from obvious
degenerate cases of uniform (one-dimensional ) advec-

tion along a particular coordinate direction. This was
first pointed out by Leith (1965) in relation to second-



NOVEMBER 1996

order methods but it is true for all methods higher than
first order.

A von Neumann stability analysis suggests why this
instability occurs. Using the standard notation

0,=kh, 6,=kh, (11)

for nondimensional wavenumbers, the two-dimen-
sional complex amplitude ratio G for the exact advec-
tion equation is (Leonard et al. 1993)

Gexact = eXP[_L(c°0)] = exp[_b(cxex + cyg)’)]’
(12)

where ¢ = y—1. In expanded form, this is

Gexact =1- %(Cxex + Cyey)2 + T L[(C;ﬂx + Cyey)

—é(cxﬂx +¢,8,)°+ 1. (13)
For the first-order donor-cell method,
G =1-uch + )+ 002+ 0(07), (14)

thus matching Eq. (13) through all first-order terms.
Using second-order one-dimensional face values such
as the Lax—Wendroff (1960) or Leith (1965) method,
for example, leads to

GM=1- %(chﬁ +¢262) + 0(8%) + 0(6%)

— (b + ¢,8,) + 0(83) + 0(8)]. (15)

This is missing the critical second-order cross term,
¢0.¢,0,. The lack of this term is responsible for the
basic instability of higher-order schemes using coor-
dinate-wise one-dimensional fluxes.

The cross terms appearing in Eq. (13) are of fun-
damental importance in constructing stable two-dimen-
sional algorithms. Similar additional terms are neces-
sary in three dimensions. Such cross terms can be in-
troduced in two different ways:

(i) conventional operator splitting using sequential
one-dimensional updates in each coordinate direction, and

(ii) building in fransverse contributions to the esti-
mates of the effective multidimensional face values
directly.

Our flux-integral method, Leonard et al. (1995b), for
example, and the related earlier methods of Dukowicz
and Ramshaw (1979), Smolarkiewicz (1984), Ekeb-
jerg and Justesen (1991), Rasch (1994), and H6lm
(1995), introduce the necessary cross terms in Eq. (13)
via explicit transverse contributions to the effective
face values. This is also true of ENIGMATIC (Leonard
et al. 1995¢) for arbitrarily large A¢. Conventional op-
erator-splitting methods are stable in the above sense
(as discussed in detail below ). The main problems with
operator-splitting schemes are the following.
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(i) If advective-form operator splitting is used at
each step in the process, the overall update is constancy
preserving but not conservative.

(ii) If conservative-form operator splitting is used
at each step in the process, the overall update is con-
servative but not constancy preserving.

The objective of our current approach, outlined be-
low, is to combine advective-form and conservative-
form (unrestricted-time-step) operators in such a way
as to introduce the necessary stabilizing cross terms
while still maintaining both constancy and conserva-
tion. There are a number of ways that this can be
achieved using combinations of one-dimensional flux-
difference operators.

4, Flux-difference splitting

Conventional advective-form operator splitting con-
sists of the following steps (in two dimensions). First,
an intermediate one-dimensional update is formed; for
example, in the x direction:

bax = ¢ + " [P(P) — $°(P)],  (16)

where the face values are based on one-dimensional
estimates in the x direction (normal to the faces), start-
ing with the original cell-average values as implied by
the notation. The important thing to note is that the
second term on the right-hand side of Eq. (16) can be
written as the difference of face fluxes but with the
same cell-based velocity component (not necessarily
cell centered) used in the determination of each flux.
This, of course, destroys face-flux uniqueness and,
therefore, conservation; for example, the east-face flux
of cell (i, j) is not necessarily the same as the west-
face flux of cell (i + 1, j). The subsequent update in
the y direction is based on one-dimensional estimates
of north and south face values, starting with the ¢,y
cell averages:

Pixy = bax + e [6:°(ax) — dP(dax)], (17)

again using a common cell-based velocity component
Usmg dax (rather than ¢) in the arguments of ¢ P and
¢ P introduces the stabilizing cross terms. The overall
update is thus equivalent to, in this case,

iy =& + " [P(P) — ()]
+ Cse“ [¢:D(¢Ax) — ¢2(Pax)]. (18)

Note, however, that the usual way of performing op-
erator splitting is to overwrite the intermediate update
(¢ax in this case) onto the ¢ array and then subse-
quently overwriting ¢y onto the same array, per-
forming the calculations sequentially, as in Eqs. (16)
and (17).

One could, of course, reverse the order of coordi-
nate-direction updates (in three dimensions, there are
six possible sequences). In this case, the resulting
equivalent overall update is



G (Pay) — D2 (dar)]
+ S [IP(P) — HP(P)] (19)

using a definition analogous to Eq. (16) for the inter-
mediate ¢,y. To reduce any potential directional bias,
it is common practice to alternate the directional se-
quences; that is, first (x followed by y) and then (y
followed by x), etc. (Strang 1968).

If ¢ is 1mt1a11y equal to a constant, ¢, everywhere
(and assuming consistently homogeneous face values),
then it is obvious from Eqgs. (16) and (17) that the
updated value, ¢ 1xy, remains equal to ¢, as well, dem-
onstrating that the (nonconservative) advective-form
operator-splitting technique maintains constancy.

bin =+

It is instructive to rewrite Eqs. (16) and (17) in op-
erator form. Let X,(¢) represent the advective-form”

one-dimensional flux difference in Eq. (16), then

$ax = ¢ + ' [$)P(P) — 6°(P)]
= ¢+ Xa(d)=(1+X)(d). (20
Similarly, using an analogous definition for Y,
Gixr = bax + Yaldax) = (1 + Ya)(dax), (21)
or, substituting Eq. (20),
bixr = (1 + Y (1 + Xa)(4). (22)
Expanding the product of operators gives
Gl = (1 + X, + Yy + LX)(P).  (23)
Reversing the order gives
Gl =1+ X, + Y4+ XuY)($).  (24)

Under constant-coefficient conditions, these operators
lead to the correct corresponding stabilizing cross-
product terms in the complex amplitude ratio. As ex-
plained above, such cross terms are missing from the
simple-minded update using one-dimensional fluxes
(based on ¢) in both directions simultaneously in a
single-step update,

b= (1 + X4 + Ya)(P), (25)

thus leading to instability (except for first order, as
mentioned previously).

A practical flow calculation will involve nonconstant
coefficients and, possibly, nonlinearities in the flux-dif-
ference operators (such as those introduced by flux lim-
iters). In such cases, there is no simple formula for the
equivalent overall update. However, the basic stabiliz-
ing ‘‘cross-product’” mechanism is still active.

Now consider a conservative-form one-dimensional
flux-difference operator, X, so that

box =& + Xc(P) = ¢ + cod'P(P) — b !P(d),
(26)

with an analogous formula for Y. The only difference
between this and the advective form, Eq. (16), is that
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here the velocity component used in each face flux cal-
culation is unique to that face (and therefore not the
same, in general, on the two faces). Conservative-form
operator splitting is then equivalent, overall, to

blxy = ¢ + Xc($) + Yel(dex), (27)
or, expanding the product of operators,
bt =(1+Xc+ Yo+ YX)(P).  (28)
Reversing the directional sequence gives
Glvx = & + Xc(dey) + Ye(db) (29)
or
b= (1 + Xc + Yo + XcYo)(h).  (30)

Again, the cross terms are responsible for multidimen-

sional stability. In this case, conservation is guaranteed

(because of face flux uniqueness) but constancy is de-

stroyed. To see this, assume that, as usual, @ = ¢.°
= ¢ in Eq. (26). Then

(—!-;CX:(I +cxw_cxe)¢0:#d)0’ (31)

SINCE Cyy F Cye, in general. In fact, J)CX varies frorn cell
to cell, depending on local deformational behavior of
the velocity field, so that the subsequent y-direction
update produces a splitting error appropriately de-
scribed as lumpiness. Of course, a similar splitting error
is always present (for variable ¢) in all calculations
based on conservative-form operator splitting wherever
¢ differs from zero. In general, this can lead to signif-
icant error and even a form of instability (a secular
growth of error in steady velocity fields), as mentioned
before.

As an example of the splitting-error lumpiness intro-
duced by conventional alternating-direction conserva-
tive-form operator splitting, Fig. 1 shows results for the
well-known test problem devised by Smolarkiewicz
(1982) of advection of a scalar field, initially in the
shape of a cone, by a strongly deformational velocity
field. In this case, however, a constant equal to the
height of the cone (which has been normalized to one
unit) has been added to the initial scalar field, although
in the figure we have plotted ¢ — 1, for convenience.
In appendlx A, we discuss the exact solution to this
problem in terms of cell averages; this is different in
significant ways from the nodal-point-value solution
portrayed by Staniforth et al. (1987). The particular
calculation shown in Fig. 1 used our one-dimensional
unrestricted-time-step NIRVANA scheme (Leonard et
al. 1995a) in conservative (but variable-velocity ) form.
In this case, we used an unlimited piecewise-fifth-order
algorithm for calculating individual one-dimensional
fluxes. For the control-volume cell size shown, & = 0.5
units (i.e., there are 50 X 50 cells per velocity cell, as
explained in appendix A); the maximum component
Courant number is ¢, = 2.64. The computation is
over the 4 X 4 velocity-cell region shown in Fig. Al;
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FIG. 1. Splitting-error lumpiness introduced by conventional alter-
nating-direction conservative-form operator splitting applied to the
“‘raised’” Smolarkiewicz test problem. Plotted results show (¢ — 1)
at t = 377200.

for convenience, only a 2 X 3 velocity-cell region is
shown in Fig. 1 (and other subsequent figures showing
results for this problem). Note how the main signal has
been almost swamped (in comparison with the exact
solution of Fig. A2) by the splitting-error lumpiness,
which continues to grow, ultimately dominating the so-
lution. If the original specifications of the Smolarkiew-
icz problem are used, the background lumpiness is not
generated immediately, simply because the constant
background field is zero. However, a corruptive split-
ting error of this kind is still present, in general, wher-
ever the advected field differs from zero, for any cal-
culation involving entirely conservative-form operator
splitting.

5. Conservaticn plus constancy

The magnitude of the splitting error, discussed in the
previous section, can be reduced (to second order in
time) either through so-called Strang splitting (Strang
1968) or through corrections to the advecting velocity
field, with comparable results (Hundsdorfer and Spee
1995). In this paper we take an alternative approach in
order to completely eliminate splitting error lumpiness
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while precisely maintaining conservation by combining
advective-form and conservative-form one-dimen-
sional flux-difference operators. A number of strategies
are outlined here. Specific comparisons of relative ac-
curacy and cost effectiveness are given in section 8.

a. Alternating direction scheme, MACHO

One possibility is to simply begin with an x-direction
advective-form flux-difference intermediate update in
the first step—being careful not to overwrite the “‘old™
¢ values:

bax = & + Xa(P). (32)

Then use J)AX for the calculation of the subsequent y-
direction conservative-form flux-difference (thereby
introducing the stabilizing cross terms ), combined with
a separate additional conservative-form flux difference
in the x direction (based on the original ¢ values). This
gives an equivalent overall update of the form

by =& + Xc(d) + Ye(dbax), (33)
or, expanding the implied operations,
bkr=(1+Xc+ Yc + YX)(B).  (34)

Each flux-difference calculation is one-dimensional,
but this form clearly satisfies conservation and main-
tains constancy, while allowing the potential for sta-
bility through the advective-conservative hybrid cross-
coupling term. In the next time step, the coordinate-
direction sequence is reversed,

dix = ¢ + Xc(bay) + Ye($) (35)

or
dix=(1+Xc+ Ye + XcYa) (o). (36)

The algorithm then alternates between Eqgs. (33) and
(35). We call this the ‘‘multidimensional advective-
conservative hybrid operator’” or MACHO method.
The need for the alternating direction aspect of
MACHO is demonstrated in Fig. 2, showing the well-
known problem of pure advection of an initial Gauss-
ian distribution in an advection field equivalent to
(anticlockwise) solid-body rotation. For the cases
shown, the one-dimensional fluxes are computed us-
ing an unlimited fifth-order NIRVANA formulation.
[One needs to take care in drawing general conclu-
sions when using this test velocity field because the
x-component velocity is not a function of x and the
y component is not a function of y; thus, for example,
a conventional entirely conservative-form operator-
splitting method will not show any lumpiness due to
splitting error (i.e., a constant is maintained, ex-
actly); similarly, a conventional entirely advective-
form operator-splitting method will appear to be
conservative.] Figure 2a shows the results of using
Eq. (33) alone; that is, (x followed by y, always).
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(@)

(b)

(©)

Note the oval-shaped distortion at intermediate lo-
cations around the circuit. Distortion in the opposite
sense is apparent in Fig. 2b, using Eq. (35) alone;
that is, y followed by x, always. The alternating-
direction strategy at successive time steps reduces the
distortion, as seen in Fig. 2c. In the latter case, there
appears to be some ‘‘phase lead’’ using this (rela-
tively large) time step (maximum Courant number
component equal to 27 ). This is due to the fact that,
in this particular velocity field, the effective advect-
ing velocities used in the algorithm are always some-
what larger than they should be because they are es-
timated at a larger radius (imagine approximate lin-

FI1G. 2. Anticlockwise rotation of an initial Gaussian: (a)
MACHO (x followed by y, always), (b) MACHO (y followed
by x, always), and (¢) MACHO (alternating direction).

ear advective characteristics projected back along a
tangent). The apparent phase lead is considerably re-
duced at smaller time steps. This type of phase error
is not usually noticeable in more general velocity
fields.

Figure 3 shows the results of using the MACHO
strategy applied to the Smolarkiewicz problem, mod-
ified as before. Once again, we used unlimited fifth-
order one-dimensional NIRVANA fluxes at each
step. There is a subtlety involving the most appro-

" priate choice of advective-form transverse velocities;

this is described in the next subsection. The constant
background field is clearly maintained, but the com-
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FiG. 3. Alternating-direction MACHO results for the raised
Smolarkiewicz test problem at ¢ = 37/200.

putation is absolutely conservative—the sum of
computed ¢ values over all cells remains constant,
to machine accuracy. For reference, Fig. 4 shows re-
sults for an alternating-direction entirely advective-
form calculation (also using an unlimited fifth-order
NIRVANA formulation). Superficially, results ap-
pear quite good; although, as discussed in section 8,
the error is significantly larger than that of the MA-
CHO calculation.

More importantly, however, this test demonstrates
that the conventional advective-form calculation is
not conservative. We have tracked the sum of com-
puted ¢ values as a function of time, for both MA-
CHO and the fully advective-form computation. For
MACHO, this diagnostic remains constant to ma-
chine accuracy, as mentioned above. For the advec-
tive-form scheme, it drifts down continually, losing
about 4% of the total ‘‘mass’’ even over the rela-
tively short time period, + = 37/200. The noncon-
servative drift is a function of the advecting velocity
field (as pointed out above, solid-body rotation does
not introduce such a drift in total ‘‘mass’’). For gen-
eral velocity fields occurring in practical problems,
the drift could be positive (anomalous gain in
‘‘mass’’) or negative (anomalous loss of ‘‘mass’’).
Although proponents of nonconservative methods
(particularly semi-Lagrangian schemes) tend to min-
imize the seriousness of lack of conservation, it
clearly could be an important consideration in some
types of problems. The need for strict conservation
(combined with no time-step restrictions, other than
those dictated by accuracy considerations) has been
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a motivating factor in developing the various advec-
tion schemes described in this paper.

b. Appropriate transverse velocities

Assume that normal velocities are known on each
face, so that Eq. (9) is satisfied exactly. For the advec-
tive-form step (which generates the necessary trans-
verse cross-coupling), we need to choose an appropri-
ate cell-based velocity, as in Eq. (16), for example.
The simplest way to do this would be to average c,,
and c,, for ¢ (or ¢, and c,, for ¢i"). In other words,
use average cell-centered VCIOCIty components. This
method would, however, sometimes generate a spuri-
ous flux across dividing streamlines (e.g., if the divid-
ing streamline lies along a cell face) near regions where
the transverse component changes sign, so the follow-
ing simple strategy has been employed:

For a y-direction advective-form update (represent-
ing a transverse contribution to a subsequent x-direc-
tion conservative-form flux estimate),

(i) if c,, > 0 and ¢y, = 0, set ¢ = ¢
(ii) if ¢,, < O and ¢, < 0, set c‘e" = Cyn}
(iii) otherwise, if cyc,, < 0, set c§"‘“ = 0.

An entirely analogous procedure is used, of course, for
the x-direction advective-form contribution to the y-
direction flux. We have experimented with other trans-
verse-velocity strategies but, to date, the above proce-
dure seems to work best in practice.

FiG. 4. Conventional alternating-direction advective-form opera-
tor-splitting results for the raised Smolarkiewicz test problem at ¢
= 377200.
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FIG. 5. Schematic interpretation of the COSMIC algorithm
for the west-face flux of a control volume.

c. Symmetric form, COSMIC

Assume that the flux-difference operators in Egs.
(33) and (35) are linear, and average the two equa-
tions. This gives a symmetric form

_ - _ _ 1 — _
o =¢ +Xcl:%(¢ + ¢AY):| + YC|:E(¢ + ¢AX):|-
(37)

In this case, we first compute and store two inter-
mediate one-dimensional advective-form updates,
¢ax and ¢,y (without overwriting the old ¢ values).
Then perform the indicated averages with ¢. Finally,
use the one-dimensional conservative-form flux dif-
ferences based on the respective averages. Multidi-
mensional stability is made possible by the transverse
contribution to each flux. Conservation is satisfied
exactly because of the conservative form of Eq. (37).
And constancy is maintained (i.e., there is no lum-
piness error) because of the advective form of the
transverse contributions. This approach represents
‘‘conservative operator splitting for multidimensions
with inherent constancy’” or COSMIC. If the flux-
difference operators are nonlinear (such as those of
shape-preserving schemes), we simply postulate the
existence of a symmetric form given by Eq. (37),
which happens to be consistent with Eqs. (33) and
(35) in the linear case.

For the Smolarkiewicz test problem, the COSMIC
(fifth-order) calculations are graphically indistinguish-
able from those of MACHO. In general, for the same
one-dimensional flux-difference operators, COSMIC
tends to be somewhat more accurate than MACHO—
but also a little more expensive. The relative compu-
tational efficiency is explored in section 8.
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Figure 5 shows a schematic interpretation of the
COSMIC algorithm for the west-face flux of a given
control-volume cell. Along each y-direction column,
one-half the weight of transverse ‘‘departure cell’’ val-
ues (not necessarily corresponding to grid cell values)
is swept, via the advective-form operator (using an ap-
propriately modified cell-based velocity as described in
the previous subsection), into the row upstream of the
west face and added to half the weight of cell averages
in this row. The appropriate amount of flux along this
row (length c,, 2) is then swept through the west face.

d. Relationship to other schemes

Most large-At explicit multidimensional advection
schemes are currently based on semi-Lagrangian tech-
niques, interpolating point values of the advected quan-
tity at the departure point (Staniforth and C6té 1991).
As is well known, semi-Lagrangian methods are not
conservative. Under uniform advecting velocity con-
ditions, COSMIC is equivalent to what might be called
a ‘‘conservative cell-based semi-Lagrangian’’ scheme.
The updated ‘‘arrival cell’’ value on an Eulerian grid
at cell (i, j) is effectively set equal to the earlier “‘de-
parture cell’” average value. Details of this relationship
are discussed in appendix B. Of course, the actual al-
gorithm follows the strictly conservative flux-differ-
ence form given by Eq. (37). This interpretation also
helps to explain the inherent ‘‘stability’” of the scheme
for any At. The MACHO scheme has a similar inter-
pretation. By contrast, the unstable simple-minded up-
date given by Eq. (25) has no such interpretation.

In addition to the relationship to semi-Lagrangian
schemes, there is a strong resemblance between COS-
MIC and our large-time-step conservative ENIG-
MATIC scheme (Leonard et al. 1995¢). For Courant
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FiG. 6. Schematic interpretation of the ENIGMATIC algorithm
for the west-face flux of a control volume.
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number components less than 1, there are also strong
similarities between COSMIC and our flux-integral
method, FIM (Leonard et al. 1995b).

Figure 6 shows a schematic of the ENIGMATIC cal-
culation of the west-face flux for cell (i, j). The only
difference between this and the COSMIC flux depicted
in Fig. 5 is that, for ENIGMATIC, a single average
transverse velocity, ¢, in the figure, is assumed for any
given face, whereas for COSMIC, transverse velocities
used for a particular row of cells upstream from the
west face vary from column to column (as indicated in
Fig. 5).

The relationship between COSMIC and the FIM is
most clearly seen in the case of a first-order FIM
(which, of course, is not recommended for actual use
because of the gross inherent artificial numerical dif-
fusion associated with such a method; it is used here
simply as an illustrative example). For c,, (i, j) and
¢,(i — 1, j) both positive (and less than 1), the west-
face advection flux is calculated by integrating the sub-
cell ¢(x, y) over the flux-integral parallelogram shown
in Fig. 7. To avoid a cumbersome notation, the Courant
number components are written as ¢, and ¢, respec-
tively. For a first-order scheme, the subcell behavior is
piecewise constant (equal to the local cell-average
value over each individual cell). Clearly, from Fig. 7,
we see that the integral can be broken up into rectan-
gular and triangular areas, each involving a constant
subcell value. The individual contributions to the in-
tegral are then proportional to the areas involved mul-
tiplied by the respective cell-average value. This means
that the flux is, in this case,

— CowCys =

Cxw(ﬁisz = cxw¢i—1,j Ty ¢i—l,;

rectangle top triangle
12471 1231

CowCys 7
+ Ty’ G111 (38)
bottom triangle
7457

or, factoring out the normal Courant number compo-
nent,

Con S = Cxw[ai—l,j + c_zy_f (Q_bi—l,j—l - J’i~1,j)] . (39)

This can be rewritten as

1- 1 -
Cos = Cxw{i b1+ 5 (i1,

+ C;v(ai—]‘j—l - ‘?’)54,/’)]} (40)
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or .
Conl’ = cm{; [$2°() + ¢>BC(Z¢3AY)]}

1 — p—
= cm¢80[5 (% + dm)] , (41)
where ““DC’’ stands for a (first-order) one-dimensional
donor-cell value at the indicated face, and ¢,y is the

advective-form update in the transverse direction; in
this case,

‘7’AY = ($i—l,j + cy_s(a)i—l,j—l = ¢i1,)- (42)

The important thing to note is that the same transverse
velocity component, c,, in Eq. (42), muitiplies both
the north and the south (donor-cell) face values for cell
(i — 1,j). Equation (41) is identical in form to a first-
order COSMIC formula for positive Courant number
components less than 1. Higher-order FIM formulas
can be interpreted in a similar manner. The interesting
(and important) thing, of course, is that whereas the
FIM formulation is limited to small At (| ¢, |¢,l
=< 1), COSMIC has no such At restrictions.

As mentioned earlier, the COSMIC scheme de-
scribed here is similar in many respects to the so-called
“flux-form semi-Lagrangian’> method recently de-
vised by Lin and Rood (1996). For the transverse ad-
vective-form contribution, these authors recommend
cell-centered velocities and appear to advocate a simple
first-order method, using a higher-order conservative-
form scheme for the overall update. However, as they
demonstrate, their method can be extended to include
higher-order transverse contributions, as well, similar
to the methods described here.

e. Pseudodensity algorithm

Yet another method exhibiting strict conservation
and constancy preservation can be designed by intro-
ducing a pseudodensity and using conservative-form
one-dimensional flux-difference calculations at each
step. This is related to a technique described by Easter
(1993).

In this case we begin with a conservative-form one-
dimensional update in the x direction, with the face
values based on ¢,

box = ¢ + cap X (P) — cubP($).  (43)

Now introduce a pseudodensity, initially set equal to 1
everywhere (and reset to 1 before each update). A con-
servative-form, x-direction update of this pseudoden-
sity would give

Pox =1+ Cny — Cre- (44)
The corresponding pseudoscalar, at this stage, is
Fa =2 (45)
Pcx
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FiG. 7. West-face flux for a first-order flux integral method
for (positive) Courant number components less than 1.

This is now used for estimating one-dimensional north

and south face values in the subsequent y-direction up-

date

by = box + €D (E) — e (&), (46)

Note that the first term on the right-hand side is ¢cy
(and not ¢ 2y). As with MACHO, the directional se-
quence is reversed at the next time step. The overall
update is conservative because face fluxes are unique
to each face. Constancy is also maintained, as seen by
setting ¢ = ¢, initially, in which case Eq. (43) be-
comes

bex = (1 + oy — o) o, (47)
giving, from Eq. (45),
P W < S (48)

_l+c,,w—cxe

In other words, the potential lumpiness in the scalar is
exactly cancelled by the identical lumpiness in the
pseudodensity.

A symmetric form analogous to COSMIC is easily
devised. Starting with temporary conservative-form

updates in each direction, form the following pseudo-

scalars and concomitant averages

—_—
box = 1 +ec. —c. (49)
Pavx = % (¢ + &) (50)
Tk _ J’CY
bey = P (51)

b =5 (B + BE) (52)
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Then the single-step conservative update becomes
¢ = ¢ + Cad i (Pavy) — Cui®(Pavy)
+ Cuhi®(Pave) = i (Gavx).  (53)
This pseudodensity strategy gives results very simi-
lar to those of MACHO or COSMIC.
6. Three-dimensional algorithms

The MACHO strategy can be applied directly to
three dimensions. To reduce directional bias, one
should use a consistent sequence of each of the six
possible permutations of the order in which the coor-
dinate directions are considered in turn.

To construct a three-dimensional COSMIC scheme,
consider the average of the six permutations of the
product of each of the operators (1 + X), (1 + Y),
and (1 + Z). This can be written as

AVERAGE

| 1 1 1
1+ [1+2Y(1 3Z>+22<1+3Y>]
1 1 1 1
+Y|1+2Z(14+X)+= -z
rfreae(iean)eax(e57)]
1 1 1 1
+Z[1+‘2*X<1+§Y)+§Y<1+§X>}.
(54)

This operator applied to ¢ can then be rearranged to
give the following three-dimensional COSMIC update:

B =B+ X1 + B+ B
B+ Bt B
+ Y{é [( + Baz + Bazx)
+ (¢ + dax + <7>sz)]}
+ Zc{% [($ + Bax + Baxy)
@+t B0l } (59)

where, for example,

(-I-SAYZ = <7>Az(<3u) = J’AY + Zy(Par)-

The algorithm thus proceeds as follows:

(56)

(i) Compute and store the three basic advective-
form updates ¢ux, Pay, and @az.
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(ii) Compute and store the six cross-coupling ad-
VeCtil’e'form updates Paxy, Pavxs Pavzs Pazy, Pazs
and ¢sz.

(iii) Compute and store the three averages defined
within the respective curly brackets in Eq. (55). Call
these, for example, davyz, Pavzx, and @ayxy, respec-
tively.

(iv) The single-step explicit update then uses con-
servative-form one-dimensional flux differences based
on the respective averages:

% = ¢ + Xc(bavrz) + Ye(bavax) + Ze(Pavxy).
(57)

Note how this reverts to Eq. (37) for two-dimensional
flow if, for example, all z-direction fluxes are zero so
that

buz= (58)

and

J)A)Z = (_bAZY = J)AY- (59)

7. Shape preservation

Piecewise-polynomial (or spline ) techniques used in
the one-dimensional flux calculations can lead to un-
physical undershoots or overshoots of the transported
variable in regions involving strong changes in gradi-
ent. This is a type of Gibbs phenomenon, reflecting the
fact that polynomials are not appropriate interpolators
for data involving nearly discontinuous behavior. Un-
dershoots, for example, can be found in Fig. 3 for the
MACHO calculation (using unlimited piecewise-fifth-
order polynomial interpolation in each of the one-di-
mensional NIRVANA flux calculations). In many
cases, it is important to try to eliminate (or at least
minimize) this lack of shape preservation; in particular,
normalized density ratios should lie between 0 and 1;
in other situations (e.g., turbulence modeling), a local
anomalously negative quantity (caused by a spurious
numerical undershoot) could lead to nonlinear insta-
bility.

For small time steps, usually governed by either

(60)

el + 1] =1
or

max(|e.l, [¢,) < 1,

(61)

a number of flux-limiter approaches can be used. One
of the most successful of these appears to be the strat-
egy recently developed by Thuburn (1996). This is a
genuinely multidimensional flux-limiter technique,
closely related to our own multidimensional limiter ef-
forts (Leonard et al. 1993). Many other workers have
applied the flux-corrected transport (FCT) idea of Za-
lesak (1979); for example, see H6lm (1995). This in-
volves modifying first-order upwind fluxes with limited
antidiffusive fluxes. The first-order flux is usually taken
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to be the one-dimensional donor-cell form, governed
by inequality (60) (Rasch 1994 ). H6lm appears to be
the first to have used a multidimensional first-order
scheme for FCT; this is governed by the less restrictive
condition given by inequality (61) (see Leonard et al.
1993).

For large Ar and deformational velocity fields,
shape-preserving techniques appear to be more elusive.
For example, even first-order conservative-form oper-
ator-splitting schemes are no longer monotonic for
Courant number components larger than one. Thus
FCT techniques cannot be used. Using entirely advec-
tive-form operator splitting (e.g., based on shape-pre-
serving one-dimensional schemes such as NIR-
VANA), multidimensional shape preservation can be
achieved. But, of course, conservation is lost. By con-
trast, conservative constancy-preserving schemes, such
as MACHO or COSMIC, cannot guarantee strict mul-
tidimensional shape preservation under all circum-
stances. The problem stems from a combination of
large At and deformational velocity fields. Figure 8
shows an alternating-direction MACHO calculation of
the well-known ‘rotating split cylinder’’ problem, us-
ing seventh-order NIRVANA fluxes in combination
with the large-Ar universal limiter (Leonard et al.
1995a; Leonard 1991); the maximum Courant number
component is 27r. The figure shows a histogram of cell-
average initial conditions (which also represents the
exact solution after any integer number of rotations)
and computed cell-average results after one rotation.
The computation is performed on a 100 cell X 100 cell
domain; the cylinder, initially centered at (504, 75h)
is of radius 15k, with a 5 cell X 25 cell slot; only the
50 cell X 50 cell region near the cylinder is shown in
the figure. Results are shape preserving but this is be-
cause, for this particular velocity field (as explained
earlier), MACHO is equivalent to conventional (but
conservative) entirely advective-form operator split-
ting. The exceptionally sharp resolution seen in the fig-
ure is due primarily to the high-order base scheme used
for the one-dimensional fluxes.

Figure 9 shows results for the Smolarkiewicz prob-
lem using conventional advective-form operator split-
ting (with limited fifth-order NIRVANA one-dimen-
sional fluxes using cell-based velocity components as
previously described). This should be compared with
Fig. 4. Results are shape preserving—but not conser-
vative. Finally, Fig. 10 shows ‘limited”” MACHO re-
sults for a relatively large time step (again using a lim-
ited fifth-order NIRVANA formulation). Although un-
dershoots appear to be eliminated in comparison with
the corresponding unlimited scheme (Fig. 3), they are
not completely eliminated (the magnitude of the max-
imum undershoot in Fig. 10 is 0.0021 —a very small,
but not totally negligible, value). This appears to be a
problem with all large-Ar conservative schemes in
general velocity fields. However, since the lack of
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(b)

F1G. 8. MACHO calculation of the rotating split cylinder problem, using seventh-order NIRVANA fluxes and the universal limiter.
(a) Cell-average initial conditions. (b) Cell-average results after one rotation.

shape preservation appears to be quite small, such
schemes are appropriately called ESP.
8. Computational efficiency

In this section, we present a preliminary study of the
relative cost and accuracy of the new advection

FiG. 9. Entirely advective-form alternating-direction operator-
splitting results for the Smolarkiewicz test problem, using limited
fifth-order NIRVANA fluxes; ¢ = 37/200.

schemes introduced in this paper. In particular, we first
perform a spatial grid-refinement study using the Smo-
larkiewicz problem, keeping the time step fixed. We
also track the relative cost of the various new schemes
based on CPU times. Of particular interest is the com-
putational efficiency diagram: a plot (on a log-log
scale) of error versus cost for different methods, as the
grid is refined. We use an L, error norm

h? - -
LI = E 2 2 [¢computed - ¢exact| .
i

Clearly, other diagnostics such as L, or L. could be
used. This diagram gives a good indication of the
““best’” (most cost-effective) scheme for a class of
problems similar to the test problem being studied. $Spe-
cifically, we can see at a glance which scheme has the
lowest cost for a prescribed accuracy or, alternatively,
which scheme achieves the best accuracy within a pre-
scribed budget.

Figure 11 shows the computational efficiency dia-
gram for COSMIC and the alternating-direction en-
tirely advective-form operator-splitting technique
given by Egs. (23) and (24). Both schemes use unlim-
ited fifth-order NIRVANA formulations. The results
presented are at output times incremented by 7/200;
the grid spacings are given by A = 0.25, 0.5, 1, and 2
units. The time step in each case is Ar = 1.32. Re-
spective maximum component Courant numbers are
5.28, 2.64, 1.32, and 0.66. Note that at fine spatial res-
olution, the error is leveling out; the asymptote repre-
sents the temporal discretization error, in respective
cases.

(62)
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Fic. 10. Alternating-direction MACHO results for the Smolar-
kiewicz test problem, using limited fifth-order NIRVANA fluxes; ¢
= 37/200.

It is now immediately obvious that, while the con-
ventional advective-form scheme is nearly 50% less
expensive to run (per space—time grid point), the error
is substantiaily larger, irrespective of the question of
conservation. Thus, if one were to specify a required
accuracy, in terms of L; error, at time ¢t = 37/200, of
no larger than, say, 3.3 X 1073 (or ~e™>7), then COS-
MIC would cost roughly 7 CPU seconds (=~e'?),
whereas the advective-form scheme would cost 122
CPU seconds (~e**). For a prescribed accuracy, then,
the (nonconservative) advective-form operator-split
scheme is appallingly expensive in comparison with
COSMIC. Alternatively, for a prescribed computa-
tional budget, COSMIC is able to produce results with
significantly lower error.

Figure 12 shows the same diagram for COSMIC
again, but now plotted with alternating-direction
MACHO and the alternating-direction basic and the
symmetrical forms of the pseudodensity-compensated
conservative-form operator-splitting technique given
by Eqgs. (46) and (53). All schemes use fifth-order one-
dimensional NIRVANA fluxes. Beyond the first output
time (¢ = 7/200), a steady pattern of the results has
emerged. At high resolution, there is very little to
choose between any of the schemes (a particular re-
quired accuracy would cost much the same) although
COSMIC is fractionally the most efficient. At lower
resolutions, it can be seen that all the schemes are gen-
erating very similar errors at each time and resolution,
and so the schemes that are less expensive on a space—
time gridpoint basis are similarly more computation-
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Fic. 11. Computational efficiency diagram for COSMIC (+) and
the alternating-direction advective-form operator-splitting technique
(X). The lines join up results at the same time for different resolu-
tions; solid lines are at ¢ = 7/200, dash—dot for ¢+ = 277200, dashed
for ¢+ = 377200, and dotted for + = 47/200.

ally efficient. The costs of the schemes, relative to a
COSMIC value of 1.0, are as follows: basic pseudo-
density conservative form, 0.43; MACHO, 0.7; and
symmetrical pseudodensity conservative-form, 0.85,
Finally, Fig. 13 shows the computational efficiency
diagram for COSMIC schemes using one-dimensional
NIRVANA fluxes of various orders (third, fifth, and
seventh). In this case, Ar is changed in proportion to
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Fic. 12. Computational efficiency diagram for COSMIC (+), and
alternating-direction forms of MACHO (X) and the basic () and
symmetrical (A) pseudodensity operator-splitting methods. The lines
are as in Fig. 11.
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FiG. 13. Computational efficiency diagram for COSMIC schemes
of various orders: third order (+), fifth order (X), and seventh order
(). Results are for t = 77200.

h (At/h = 0.51). Note that although cost increases
with order on a fixed mesh, accuracy increases even
more, so that the higher-order schemes are more cost
effective, overall: lower cost for a prescribed accuracy,
or better accuracy for a prescribed cost. In our experi-
ence, this appears to be a general trend (Leonard and
MacVean 1995).

9. Conclusions

Our primary aim has been to take recent develop-
ments in extending explicit, flux-based one-dimen-
sional advection algorithms to (potentially) arbitrarily
large time step, and apply them to multidimensions
without generating the negative *‘side effects’’ of con-
ventional operator-splitting methods. In general terms,
we have tried to ‘‘do operator splitting correctly,”” us-
ing combinations of advective-form and conservative-
form unrestricted-time-step explicit one-dimensional
operators—maintaining conservation without intro-
ducing splitting-error lumpiness. The resulting algo-
rithms should be easily incorporated into existing codes
based on traditional operator-splitting methods.

The new advection schemes, MACHO and COSMIC
(and their pseudodensity relatives), should be com-
petitive with popular large-A¢ semi-Lagrangian
schemes—except, of course, that now we have the im-
portant added advantage of strict conservation. We
have not performed direct computational-efficiency
comparisons between the new methods and semi-La-
grangian schemes (primarily because of subtle com-
plications arising from the difference between nodal-
point and cell-average formulations). But we extrap-
olate from the conclusions of Rasch (1994 ), who found
that his nominally third-order conservative scheme
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gave results generally competitive with semi-Lagrang-
ian calculations, even though his scheme has fairly rig-
orous At restrictions (| c.| + |¢,| < 1).

The removal of Courant number—dependent ‘sta-
bility’” restrictions on At means that the choice of time
step can be guided by accuracy considerations in esti-
mating the advecting velocity field. We merely require
that vAz be a “‘good’” estimate of displacement along
a local advective characteristic in a single time step,
regardless of the Eulerian mesh size. Thus, in practical
velocity fields, a coarse-mesh region might require lo-
cal Courant number components significantly less than
O(1), whereas fine-mesh regions might involve Cour-
ant numbers very much larger than O(1). This is true
whether one uses (nonconservative) semi-Lagrangian
schemes or the new unrestricted-At conservative flux-
based methods.

For uniform advection at any angle to the grid, the
grid-convergence rate is the same as that of the under-
lying flux-difference interpolation scheme. In varying
(steady or unsteady) advection fields, a somewhat
slower spatial convergence rate is typical; this appears
to be due to phase errors arising from the estimation of
the advecting velocity components. However, for flows
involving unsteady velocities, the temporal conver-
gence rate is only first order—if lagged advecting ve-
locities are used. In general, the truncation error would
then involve terms of the form

TE = O(|ul|h”, At"), (63)
where # is the formal order of the constant-coefficient
scheme. But the velocity components themselves have
the form

lul = |uo|[1 + O(AD)]. (64)

Thus, for example, in a grid-convergence study holding
At proportional to # (approximately constant Courant
number), the grid convergence rate is (close to)
O(h"™).If Atis constant, the convergence rate (relative
to the solution for # — 0 at this At) is also O(#"). But
if & is held constant, the temporal convergence rate is
only O(At). In our experience, this does not seein to
represent a serious problem. Better temporal conver-
gence can be achieved by staggering the velocity field
in time as is done with conventional operator-splitting
methods and many semi-Lagrangian and other
schemes. However, as with any large-A¢ scheme, one
needs to give careful thought to the choice of time step.

The new advection schemes described here, in com-
mon with our earlier ENIGMATIC scheme, are essen-
tially shape preserving (ESP) in the following sense.
If the component Courant numbers are everywhere less
than one and the individual (advective and conserva-
tive) one-dimensional fluxes are based on shape-pre-
serving interpolation—such as that corresponding to
the universal limiter, for example (Leonard 1991), the
overall update is shape preserving. However, for large
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time steps and general velocity fields (so that the x-
component velocity varies with x, and so on), the con-
servative flux-difference computations in the overall
update cannot guarantee shape preservation. Fortu-
nately, in most practical situations, the lack of strict
shape preservation appears to be quite small, as was
seen to be the case for the Smolarkiewicz test problem.
The usefulness of the unrestricted-time-step capability
of the schemes will be most apparent in variable-grid
applications. For example, on a standard spherical grid
where longitudinal mesh refinement occurs near the
poles, one would like to choose the time step based on
accuracy considerations, so that component Courant
numbers are O(1) in coarse-mesh regions; this would
imply very large Courant numbers in fine-mesh
regions. Under such conditions, ESP behavior appears
to occur because in fine-mesh regions, although Cour-
ant numbers are high, the velocity field changes very
little across any given cell so that the local computation
approaches that of an entirely advective-form scheme
(which is shape preserving provided the individual
one-dimensional flux differences are).

A formal stability analysis (e.g., in the von Neumann
sense ) shows that the large-At schemes described here
are unconditionally stable under conditions of uniform
advection. This can be extended to the entirely advec-
tive-form large-At scheme, as well. The results follow
directly from the large-At¢ one-dimensional analysis
(Leonard 1994). A demonstration of formal stability
in the general case appears to be somewhat more elu-
sive. However, in our experience, using a number of
test problems at very large At, there is never any hint
of instability. As the time step is increased to very large
values, accuracy is impaired (because of a less precise
estimate of the advective displacement over Ar) but
stability remains intact.
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APPENDIX A

Cell-Average Reference Solutions for the
Smolarkiewicz Test Problem

This test problem, defined by Smolarkiewicz
(1982), is the advection of a scalar field initially in the
shape of a cone (of radius 15 units, height normalized
here to 1 unit) centered in a square domain of side L
= 100 units. The advecting flow field is defined by the
streamfunction

Y(x,y) = A sin(kx) cos(ky), (A1)
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FiG. Al. Velocity field for the Smolarkiewicz test problem.
Contour lines show the initial scalar field.

where A = 8 and k = 4xn/L, so that the flow consists
of a set of symmetrical vortices, as shown in Fig. Al.

Staniforth et al. (1987) showed how the analytic
solution for this problem can be derived using the
fact that the advected field ¢ is conserved along tra-
jectories. To solve for the trajectories of the fluid
elements, they translated the coordinate system (x,
y)toone (x',y'), with its origin at the bottom left-
hand corner of the square in which the fluid element
is constrained; that is, for integer values of n and [,

kx=nm+86 (A2)

—(;-1
ky —.<l 2>7r+ A,

where § = kx’ and A = ky’, so that 8 and \ both lie
between 0 and 7. They then derived equations for the
time variation of 8 and \:

(A3)

2
<d—9> = A%*(m — cos?0) (A4)
dt
2
(%) = A%*(m — cos?\), (A5)

where the constant m can be given in terms of the po-
sition of the fluid element at the required time ¢, that
is, (x:, y), by

_ (i, y)?
m=1-—-——=—.

e (A6)
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FiG. A2. Two-dimensional histogram of cell-average values
of the reference solution for ¢ = 377200, & = 0.5 unit.

Staniforth et al. présent analytic solutions at output
times ¢t = T/200, 27/200, 37/200, and 4T/200, where
T = 2637.6 s; but it should be noted that they work
with nodal-point values on a highly variable grid with
drastically increased resolution in regions of large gra-
dient in the advected field (although they did not point
this out, explicitly).

Instead of working with the analytic solution, we
prefer to integrate Eqs. (A4) and (AS) numerically
(e.g., using a highly accurate fourth-order Runge—
Kutta scheme with a very small time step) backward
in time to give the initial position (and hence the initial
¢ value) of any prescribed fluid element located at po-
sition (x,, y,) at time £.

For direct comparison with computed results from
finite-volume advection schemes, we present the so-
lution as a histogram of cell-average values. A reg-
ular grid is used with a spacing of 2 = 0.5 unit (giv-
ing 200 X 200 cells over the whole domain) and
staggered so that the bottom left-hand cell is cen-
tered at (0.5k, 0.5h). Thus, the computational cells
lie entirely within the squares occupied by the vor-
tices, and the dividing streamlines lie along cell
edges. The cell-averaged solution is calculated sim-
ply by averaging exact nodal-point values from a
very fine grid of A = 0.125 unit (staggered so that
points lie on the dividing streamlines and cell
edges).

Figure A2 shows the two-dimensional histogram of
cell-average results at ¢+ = 37/200 for the six central
vortices (where ¢ values are nonzero). Note how the
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extremely sharp (nodal-point) features in the figures
presented by Staniforth et al. are effectively ‘‘eroded’’
away when averaged over the finite-volume cells in
which they occur. The ‘‘back wall,”” for example,
which is formed from the peak of the cone being
stretched along the dividing streamline at y = 62.5
units, is perhaps the most obvious example of this cell-
average erosion.

Cell-average histograms of the type shown in Fig.
A2 are the appropriate exact solutions to be used for
evaluating numerical solutions for this problem. Fi-
nite-volume schemes solve for cell averages di-
rectly. Other schemes may appear to be written in
terms of nodal-point values but are effectively
working with cell averages. This is true, for exam-
ple, for first- and second-order methods for which a
nodal value is equal to its respective cell average.
The nodal-point solutions presented by Staniforth et
al. would only be appropriate for (third- or) higher-
order methods using subcell reconstruction of the
node values. For the extremely thin features of the
Smolarkiewicz test problem, the exact subcell be-
havior is clearly rather pathological. It therefore
makes much more sense to work directly in terms
of cell averages.

APPENDIX B
Interpretation under Uniform Velocity Conditions

Under uniform advecting velocity conditions, the
large-time-step algorithms described in this paper have an
interpretation that might be described as a conservative
cell-based semi-Lagrangian update. For clarity, we will
first sketch the idea for COSMIC in two dimensions (the
ENIGMATIC scheme has an identical analysis). Details
for MACHO are different, although the result is the same.
Finally, the simple-minded use of simultaneous onc-di-
mensional fluxes is shown to be physically inconsistent.
The analysis for three dimensions is entirely analogous,
although obviously more complicated.

FiG. B1. Schematic diagram showing the labeling of points used
in the interpretation of various algorithms under uniform velocity
conditions.
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a. COSMIC

Consider Fig. B1, showing various relevant
points. Physically, the updated average value in cell
ABCD should be the average over the shaded area
[JKL. We write out the conservative flux-based al-
gorithm to show that this, in fact, does occur. In the
following, groupings in parentheses, such as
(ABCD), (DCOP), etc., represent averages over
the respective areas.

The two-dimensional update aigorithm is

¢ =¢ +c(dP — d°) + (¢ - $2°). (B1)
For COSMIC (and ENIGMATIC), in terms of aver-
ages over the indicated areas, this can be written

é* = (ABCD) + {% [(DCOP) + (HGKL)]
~ 3 [(ABNM) + (EFJI)]}
+ {% [(BFGC) + (NJKO)]
~ 2 [(AEHD) + (MILP)]} . (B2)

Expanding the area integrals involved in the various
averages results in

é* = (ABCD)
+ % [(DCNM) + (MNOP) + (HGJI) + (UKL)]

- % [(ABCD) + (DCNM) + (EFGH) + (HGJI)]

+ % [(BEHC) + (EFGH) + (NILO) + (IJKL)]
- % [(ABCD) + (BEHC) + (MNOP) + (NILO)].

(B3)
Canceling terms, we see that

¢+ = (IJKL), (B4)

which is correct.

b. MACHO
For (x followed by y), the MACHO scheme is
¢t =¢ + cldP(P) ~ 6.°(P)]
+¢,[0.°(Pax) — 6.2 (ax)].  (B5)
In terms of averages, this is
¢ = (ABCD) + [(DCOP) — (ABNM)]

+ [(NJKO) — (MILP)]. (B6)

LEONARD ET AL.

2605

Expanding the integrals, as before, results in

&* = (ABCD) + [(DCNM) + (MNOP)
~ (ABCD) — (DCNM)] + [(NILO) + (IJKL)

— (MNOP) — (NILO)]. (B7)
Canceling terms once again gives
$* = (UKL). (B8)
For (y followed by x), we have
é* = (ABCD) + [(BFGC) — (AEHD)]
+ [(HGKL) — (EFII)]. (B9)
Expanding and canceling once again results in
¢+ = (IJKL). (B10)

c. Simultaneous one-dimensional fluxes

The simple-minded scheme based on simultaneous
one-dimensional fluxes would read as follows

diu = + cld(d) — ¢:°(P)]
+¢[dP(d) — ¢:°(4)]. (Bl1)
In terms of area averages, this is

¢éiv = (ABCD) + [(DCOP) — (ABNM)]

+ [(BFGC) — (AEHD)]. (BI12)
Expanding the integrals leads to
é31 = (ABCD) + [(DCNM) + (MNOP)
— (ABCD) — (DCNM)] + [(BEHC)
+ (EFGH) — (ABCD) — (BEHC)]. (BI13)
This results in
¢iu = (MNOP) + (EFGH) — (ABCD), (B14)

which, of course, is not equal to (IJKL). The update
contains no information at all about the departure cell.
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