

Introduction

We present an analysis of the seasonal, subseasonal and diurnal variability of rainfall from the COAPS Land-Atmosphere Regional Reanalysis for the Southeast at 10 km resolution (CLARReS10).

We have used the NCEP-Scripps Regional Spectral Model (RSM) (Juang and Kanamitsu, 1994) to downscale both the NCEP DOE Reanalysis II (R2) and the ECMWF ERA-40 for the period 1979-2001. Dynamical downscaling of coarser reanalysis has been used successfully in a similar integration over California (Kanamitsu and Kanamaru 2007). This approach provides a computationally efficient regional reanalysis without the need for regional data assimilation of observations (von Storch, 2000). It has been shown by Lim et al (2010) that a downscaling of R2 with RSM at 20 km over the Southeast resulted in a reduced wet bias and a realistic spatial pattern of summer more precipitation, with improved spatial and temporal correlation of rainfall, and reduced mean square error.

Domain and Model Configuration

1. Domain

MPLATE DESIGN © 2008 WW.PosterPresentations.com

The CLARReS10 regional model domain is shown in Fig. 1. The regional model, NCEP/Scripps RSM uses the winds, temperature, humidity and surface pressure of the global reanalyses (either R2 or ERA40, at 6-hourly intervals, as lateral boundary conditions.

Fig. 1: Model domain 2. Model Configuration

		Feature	Reference
	1	Dynamics: hydrostatic primitive equations transformed into Fourier basis functions	Juang and Kanamitsu (1994)
	2	10-km horizontal resolution; 28 vertical layers; 4-min resolution orography	Kanamitsu and Kanamaru (2007)
	3	Planetary boundary layer process	Hong and Pan (1996)
,	4	Shortwave and longwave radiation	Chou and Lee (1996); Chou and Suarez (1994)
	3	Shallow convection	Tiedtke (1983)
	4	Deep convection: Simplified Arakawa Schubert Scheme	Pan and Wu (1995)
	5	Boundary forcing: scale selective bias correction	Kanamitsu and Kanamaru (2007)
	6	Land surface: Noah; four soil layers	Ek et al. (2003)
	Та	able 1: Regional model configura	ation and features

High-Resolution Regional Reanalysis for the Southeast United States: Seasonal, Sub-Seasonal and Diurnal Variability of Precipitation

Lydia Stefanova¹, Vasubandhu Misra¹, Steven Chan¹, Melissa Griffin¹, James J. O'Brien¹ and Thomas J. Smith III² ¹Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University; ²USGS Southeast Ecological Center

	0.96	0.91
n	0.67	0.66
	0.80	0.97
	0.93	0.92
e	0.82	0.95
	0.73	0.88
ery	0.93	0.92
	0.95	0.90
n Beach	0.54	0.83
ee	0.91	0.95
	0.83	0.76