Abstract

State of the art fully three-dimensional ocean models are very computationally expensive and their adjoints are even more resource intensive.  However, many features of interest are approximated by the first baroclinic mode over much of the ocean, especially in the lower and mid latitude regions.  Based on this dynamical feature, a new type of data assimilation scheme to assimilate sea surface height (SSH) data, a reduced-space adjoint technique, is developed and implemented with a three-dimensional model using vertical normal mode decomposition.  To reduce the complexity of the variational data assimilation problem, the adjoint equations are based on a one-active-layer reduced gravity model, which approximates the first baroclinic mode, as opposed to the full three-dimensional model equations.  This adjoint model is only two-dimensional, which dramatically reduces the computational cost over a traditional variational adjoint data assimilation algorithm.  The technique is applicable to regions of the ocean where the SSH variability is dominated by the first baroclinic mode.  The adjustment of the first baroclinic mode model fields dynamically transfers SSH information to the deep ocean layers. The technique is developed in a modular fashion that can be readily implemented with many three-dimensional ocean models.  For this study, the method is tested with the Navy Coastal Ocean Model (NCOM) configured to simulate the Gulf of Mexico.
1. Introduction

Measurements of the ocean environment are difficult and expensive, especially within the deep ocean.  As a result, oceanic data are usually sparser than their atmospheric counterparts and are non-uniformly sampled in time and space.  The launch of many ocean observing satellites over recent decades has yielded a vast amount of data for the ocean’s surface.  In order to deepen and broaden our understanding of ocean circulation, it is very important to optimize the use of these expanded but still insufficient valuable datasets.  This requires the blending of present observations with the theoretical knowledge from past observations, incorporated into numerical models.  

Numerical models can be used to assimilate oceanographic data, creating a dynamically consistent, complete and accurate depiction of the three-dimensional time-dependent ocean state.  One key problem for oceanographic applications is how to determine variables not directly observed at many locations, such as the velocity, from available observed variables, such as sea surface height (SSH).  The answer lies in the dynamical coupling between variables, which is a central role that dynamics plays in estimating the state of the ocean from incomplete data.

Data assimilation is a powerful tool for extracting the maximum amount of information from observations and has been extensively used in numerical atmospheric and oceanic modeling.  In order to assimilate observations into numerical ocean models, there exist a variety of different methods, most of which were originally developed in meteorology.  An extensive review of these methods can be found in Ghil and Malanotte-Rizzoli (1991) and Le Dimet and Navon (1988).  Data assimilation methods can be classified as function fitting methods, statistical interpolation methods, nudging data assimilation, variational methods and Kalman Filtering techniques.

The first application of variational methods was by Sasaki (1955, 1958) in meteorology.  Sasaki (1969, 1970a, 1970b, 1970c) has made further efforts in developing variational methods and generalizing the application of variational methods in meteorology to include time variations and dynamical equations in order to filter high-frequency noise and to obtain dynamically acceptable initial values in data void areas.  The four-dimensional (4-D) Variational approach was first introduced as early as the 1980’s (Le Dimet and Talagrand, 1986; Derber, 1987; Talagrand and Courtier, 1987; Courtier and Talagrand, 1987) and has been the subject of further study (Courtier and Talagrand, 1990; Yu and O’Brien, 1991; Zou et al., 1995; Zou et al., 1997).  Its fundamental concept is to find an optimal state by minimizing the distance between a model solution and observations (cost function) while at the same time satisfying the dynamical constraints.

The variational data assimilation technique is a novel, versatile methodology for estimating oceanic variables.  It requires knowledge of ocean science, computational science, statistics, optimal control theory, and observations.  Ocean science provides the fundamental concepts, or the dynamical principles, which govern the system under observation.  With knowledge of computational science, the governing equations are translated into numerical models, which can be solved by computers.  Knowledge of statistics and observations is also crucial for many aspects, such as the definition of the cost function, the analysis of errors in the whole system.  Optimal control theory has significantly advanced data assimilation research.  It offers a deterministic approach of the estimation problem posed by the data assimilation method.

The main goal of this research is to develop a new data assimilation technique based on the variational method, and to apply it to a realistic numerical ocean model for testing and demonstration.  In this new method, the adjoint model is simplified by approximating the ocean model variable fields by their first baroclinic mode counterparts.  Vertical normal mode decomposition is applied in each assimilation cycle to retrieve the first baroclinic mode information from the forward model and to convert the fully three-dimensional problem into a two-dimensional one.  The projection of the two-dimensional field onto three dimensions with the first baroclinic mode vertical profile connects the mode one variables to the three-dimensional full model variables and allows the information from the ocean surface to transfer to deep layers.  In this application of the reduced space adjoint data assimilation method, a new method is employed to map SSH observations along satellite altimeter ground tracks to a regular grid (Yu et al., 2004; Yu et al. 2007, manuscript submitted to J. Atmos. Oceanic Technol.).  Applying this method over a long time period considers observations that are outside the actual assimilation window, thus reducing the length of the window.  However, this variational technique can be applied to assimilate any other SSH field.  
The assimilation procedure is designed to adjust the model initial conditions.  The improved initial conditions will result in the model better simulating the ocean state within the assimilation window, yielding an improved analysis with which an ocean forecast can be initialized.  Several assumptions are made in the reduced space variational data assimilation technique, which lead to a more efficient way of assimilating the observations into the model system at a cost of a non-perfect convergence of the cost function.

Three numerical experiments are conducted with a Gulf of Mexico (GoM) configuration of the Navy Coastal Ocean Model (NCOM) for testing purpose.  Experiment one begins with a perturbed initial condition, and the unperturbed model SSH field is assimilated as “observations” in attempt to recover the original initial conditions.  Experiment two simulates a more realistic scenario by sampling the unperturbed model SSH as observations in a similar manner as the satellite altimeters (along satellite ground tracks).  The sampled SSH data are mapped to a regular grid using the above-mentioned mapping technique before the assimilation.  The last experiment is an application of the assimilation technique using observations from TOPEX/Poseidon (T/P) and Jason-1 satellite altimeters.
2. Methodology and Data

A new method of implementing the variational data assimilation technique is developed and explained in this chapter.  The method consists of several components, connected in a modular fashion that can be applied to a number of three-dimensional ocean models.  For this research, the NCOM is chosen as the “forward” model for testing the method.  The adjoint, often called the “backward model” because it is integrated backward in time, for the variational method is developed from a simplified model, a one-active-layer reduced gravity model.  The forward and backward models are connected through vertical normal mode decomposition and reconstruction.  These components form the data assimilation system when iterated within an optimization algorithm (Figure 1).  This new technique is designed to efficiently assimilate satellite altimeter data, which can be mapped to a uniform grid using a method such as described by Yu et al. [2007], into the three-dimensional ocean model.  The data and each of the assimilation system components are described below.

2.1 The reduced space variational data assimilation method 
Oceanic state variables can be dynamically decomposed into different vertical normal modes, where each individual mode or the combination of several modes accounts for different phenomena.  Previous work (Dewar and Morris, 2000; Dewar and Huang, 2001; Shu and Clarke, 2002) shows that many oceanic features of interest can be approximated by the top several baroclinic modes.  It has been suggested (Liu, 1999) that the SSH variability is mainly associated with the first baroclinic mode.  For example, Siegel et al. (1999) showed that in the subtropical North Atlantic, the first baroclinic mode explained 88.5% of the SSH anomaly variance using hydrographic and satellite altimeter data.  A similar analysis conducted within the Gulf of Mexico model domain used for this present research reveals that the first baroclinic mode accounts for around 80% of the total variance.  Since the satellite altimeter SSH data are assimilated in this application, it is reasonable to reduce the dimensions of the assimilation problem by using a reduced gravity adjoint model, which closely approximates the first baroclinic mode.  This assimilation method is different from the conventional adjoint technique, in which the forward and backward models are based on the same dynamics. 

The variational assimilation procedure works by minimizing a cost function, the data misfit between the SSH observations and their counterpart model variables.  For this research, the assimilation method is applied to a three-dimensional time-dependent forward ocean model that is integrated within the assimilation window.  Instead of constructing and running an adjoint model based on the fully three-dimensional forward model as in the conventional adjoint data assimilation technique, an adjoint model based on a one-active-layer reduced gravity model, which approximates the first baroclinic mode, is developed.  The different forward and backward models are dynamically connected through vertical normal mode decomposition, with which the first baroclinic mode information is retrieved from the prognostic variables of the forward model and then used when integrating the adjoint model.  After the integration (backward in time) of the approximate adjoint model, the gradient of the cost function with respect to the control variables (velocity and SSH associated with the first baroclinic mode) is obtained as an input to an optimization routine.  For this study, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (Liu and Norcedal, 1989), which is of the class of Limited Memory Quasi-Newton (LMQN) methods, is used.  The optimization algorithm, described in section 2.3, adjusts the first baroclinic mode velocity and SSH fields of the initial conditions to reduce the magnitude of the cost function.  The new values of these fields are then used to update the full forward model initial variables by reconstructing the model fields from the vertical modes (with the newly updated first mode) as described in section 2.2.  This procedure repeats until a prescribed convergence criterion is met.

2.2 Vertical normal mode decomposition

Vertical normal mode decomposition is applied to retrieve the information from the forward ocean model and connect the forward and adjoint models which have different dynamics.  The vertical normal modes are determined by solving the following partial differential equation of Sturm-Liouville type:
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with boundary conditions:
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(see Appendix A for the detailed derivation of 2.1-2.3), where S is a function of z, N is the Brunt-Väisälä frequency, g is the acceleration of gravity, and h is the equivalent depth.

Discretization of (2.1-2.3) yields an eigenvalue problem:
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where A is an n × n tri-diagonal matrix, 
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 is the eigenvalue, and S is the eigenvector.  The first eigenmode, called mode zero, represents the barotropic mode and all the other modes are baroclinic.  Based on the magnitude of the eigenvalues, the baroclinic modes are ordered as mode one, mode two, etc.  The mode number m is the number of zero-crossing(s) of the eigenvector Rm (Figure 2).

The eigenvectors Rm and Sm give the vertical structure of each mode, and the equivalent depth associated with each mode is obtained from the corresponding eigenvalue.  Once the vertical normal modes are known, the complete three-dimensional time-dependent fields can be reconstructed as
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Suppose at the end of each iteration, the updates of the first baroclinic mode variables are
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.  Since only the first baroclinic mode part of the field is updated and the separation of variables is linear, the update for the two horizontal velocity components and the pressure field are in the form of
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based on (2.4-2.6), where i is the iteration number.

Differentiating (2.10) with respect to z, one gets
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From (10A), the hydrostatic balance, the density update is 
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The updated density must then be converted to temperature and salinity variables for the forward model.  For the application of the method used in this research, a mapping from density onto temperature and salinity is derived from the local temperature and salinity profile of the forward model as follows.  At each grid point, the local vertical density, temperature, and salinity profiles averaged over time are obtained from the previous model run and hence the relation of these three variables is derived using the regression method.  The update of the temperature and salinity variables is based on this relation and the density values.  A quality control procedure is conducted after this, since some non-realistic values may occur over some points because of overshooting.  An extreme value is replaced with the weighted average of the values from its neighboring points.  Other techniques could also be used for the temperature and salinity update.

2.3 Numerical Optimization

The efficient implementation of the variational assimilation method depends crucially upon the fast convergence of a large-scale unconstrained minimization algorithm.  Since problems in oceanography contain many degrees of freedom, the Limited Memory Quasi-Newton method (LMQN) (Navon and Legler, 1987; Navon et al., 1992) is a good choice.  A review of experiences and details concerning various algorithms can be found in Zou et al. (1993).  In the LMQN algorithm, the optimal solution is approximated asymptotically by adjusting the value of the control variables iteratively along its gradient or a direction obtained from a combination of the gradients from previous iterations.

Assume that 
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where 
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 is the inverse of the Hessian matrix (the second derivative of the cost function with respect to the control variables) of the kth iteration.  A step size 
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and the control variables are updated using the formula
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This procedure continues until the convergence criterion
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is reached.  Various LMQN methods differ in the choice of initial Hessian matrix
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.  For the purpose of this study, the L-BFGS method (Liu and Norcedal, 1989) is used.

2.4 TOPEX/Poseidon and Jason-1 Altimeter Data

Many earth-observing satellites launched over recent years have provided scientists a huge amount of data.  One such instrument important to oceanographers is the satellite altimeter.  Satellite altimeters use microwave radar to determine the instantaneous elevation of the sea surface relative to an Earth-centered coordinate system, providing an absolute-reference frame for studies of sea level rise.  Satellite altimeters provide frequent near-global data coverage of the world’s oceans.  This allows altimeter-derived estimates of the SSH to be based on data collected over most of the ocean surface in contrast to the conventional datasets, e.g., the geographically sparse coastal data provided by tide gauges.  Data from the T/P and Jason-1 satellite altimeters are chosen to be assimilated in this research.

The T/P satellite altimeter provided SSH measurements with a root mean square error of less than five centimeters from its launch in August 1992 until its failure in October 2005.  The satellite had a 10-day repeat orbit, with 6.2 kilometers between observations along the ground track, and a 315-kilometer distance between neighboring ground tracks at the equator.  A complete cycle in the data record consists of 127 orbits and each orbit has a period of 112 minutes.

Jason-1, a follow-on to the T/P mission with similar functions, was launched on December 2001.  After a period of flying in tandem with T/P, T/P was commanded to move onto a parallel orbit mid-way between two adjacent Jason-1 ground tracks, doubling the spatial coverage of the observations from these instruments during the period for which both instruments operated.

Despite the increased spatial coverage provided by the two orbiting altimeters (Figure 3),
 there are still large gaps between the ground tracks comparable in size to mesoscale oceanic features.  As a consequence, it is necessary to use a good interpolation procedure to create a regular set of data values as part of the data processing.  Several mapped altimeter products and algorithms of varying sophistication exist that could be used for assimilation.  For the applications presented in this paper, a mapping technique developed by Yu et al. [2007] based on complex empirical orthogonal function (EOF) analysis (Barnett, 1983; Shriver et al., 1991) is used to produce an SSH data set with a regular temporal and spatial grid for assimilation.  The mapping method considers not only the observations within the assimilation cycle but also those prior to the assimilation window.  This allows a shorter assimilation cycle, since the technique maps the original observations from satellite ground track observational locations onto a finer spatial and temporal grid and hence reduces the time for the propagation of information between the grid points.
2.5 The ocean model

The ocean model used to test the reduced-space variational data assimilation technique is the NCOM developed at the Naval Research Laboratory－Stennis Space Center (Martin, 2000; Morey et al., 2003). It uses a hybrid sigma-z level coordinate.  The free surface is a sigma level, and the levels below the free surface are a specified number of sigma and z-levels.

The NCOM is a fully three-dimensional primitive equation ocean model with the hydrostatic, incompressible, and Boussinesq approximations.  The equations, in Cartesian coordinates, are 
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where t is the time, x, y, and z are the three coordinate directions, u, v, and w are the three components of the velocity, Q is a volume flux source term, v is the vector velocity, T is the potential temperature, S is the salinity, 
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 is the horizontal gradient operator, f is the Coriolis parameter, p is the pressure, 
[image: image41.wmf]r

 is the water density, 
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 is a reference water density, g is the acceleration of gravity, 
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 are the horizontal mixing terms for momentum, 
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 is the horizontal mixing coefficient for scalar fields (potential temperature and salinity), 
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 are the vertical eddy coefficients for momentum and scalar fields, respectively, 
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 is the solar radiation, and 
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 is a function describing the solar extinction.  

The model supports a number of higher order numerical methods.  For these simulations, a quasi-third-order advection scheme is used with a leapfrog time differencing scheme.  Details of the simulations are described in Section 3.1.
3. Experiments and Results


The reduced space variational data assimilation method, described in Chapter 2, is applied to an NCOM simulation of the Gulf of Mexico for testing and demonstration.  Three numerical experiments are run.  The first is an idealized experiment in that the data to be assimilated are not obtained from satellite altimetry, but are rather the SSH field from a model run.  The data are then assimilated into a model that has started from a different initial state and the goal is to adjust the model initial state to the original one from which the assimilated SSH data are obtained.  The second experiment is similar to the first, except that the SSH data are sampled along a pattern similar to the T/P and Jason-1 satellite tracks, and the mapping technique is applied to construct the gridded SSH fields to be assimilated.  The last experiment is an application of the technique with real data, assimilating T/P and Jason-1 data from January 9, 2004 to January 18, 2004.

3.1 Idealized experiment one

The data assimilation technique is tested using the NCOM configured for a domain covering the entire Gulf of Mexico and the northwestern Caribbean (98.15°W–80.60°W, 15.55°N–31.50°N) (Figure 3).  The horizontal resolution is 0.05° in both latitude and longitude and there are 352 grid points zonally and 320 grid points meridionally.  It has 20 evenly spaced sigma levels above 100 m depth and 40 z-levels below 100 m with a maximum depth of 4000 m.  Open boundaries are found along the eastern edge of the domain in the Caribbean and the Florida Straits.  This model is integrated for a period of 11 years from rest forced by wind stress, latent, sensible, and radiative heat fluxes derived from the DaSilva et al. (1994) 0.5° × 0.5° analyzed COADS monthly climatology fields.  The 1994 World Ocean Atlas (National Oceanic and Atmospheric Administration, 1994) (WOA94) is used to derive the model initial temperature and salinity fields.  More details of this model configuration can be found in Morey et al. [2005].
The model fields at the end of the 11th year of model integration are used as the initial condition for the first iteration of the assimilation technique (a “first guess”).  The NCOM is then integrated with a different initial condition as a control or truth run.  The SSH field at the native model resolution is sampled at one-day time intervals as the “observation” fields (Figure 5a).  The goal of this experiment is to assimilate the SSH data from the truth run into the model to adjust it toward the same state as the truth run.  This experiment assimilates an SSH observation field into a model that has not been constrained to match the truth fields in any way.  Thus, the first guess is quite different from the observation.  The purpose is to illustrate how the technique works and show if it can handle a bad first guess of the initial condition.

During each iteration the NCOM is run from an initial condition for a ten-day period and the cost function, defined as in Appendix B, is calculated.  Vertical normal mode decomposition is applied to retrieve the first baroclinic mode SSH and horizontal velocity fields as the model control variables and to get the eigenfunction corresponding to the first baroclinic mode.  The adjoint model is integrated backward in time for ten days to obtain the gradient of the cost function with respect to the model control variables.  The L-BFGS method is applied to minimize the cost function and update the first baroclinic mode SSH and horizontal velocity fields at the model initial time.  These updated first baroclinic mode variables are used to calculate the update for the full model velocity and pressure fields through vertical normal mode reconstruction.  The density, temperature, and salinity are updated based on the algorithm described in Chapter 2.  The whole procedure repeats until a prescribed convergence criterion is met.

The cost function normalized by its value of the first iteration (Figure 4a) does not decrease dramatically during the first three iterations, and then drops rapidly in the following several iterations when the optimization algorithm gathers more information from the previous iterations.  By iteration 7, it drops to 17% of the value from the first iteration with negligible change following subsequent iterations.  The evolution of the gradient norm normalized by its value from the first iteration is similar to that of the cost function.  Since the system is based on several assumptions, it is reasonable to have a non-monotonically decreasing cost function (more details of this will be given in the following section).  

The SSH field (Figure 5b) is effectively adjusted by the assimilation technique and reaches a state that is closer to the observation field.  The biggest difference between the first guess and the observation is the big anticyclonic eddy in the northwestern Gulf of Mexico.  It disappears after the assimilation procedure and the SSH field in the area around Cuba improves dramatically.  The root mean square error (RMSE, which is defined in the form of
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, where the overbar denotes a time average over the assimilation window) fields (Figure 5c) supply a better comparison.  The RMSE averaged over the model domain, defined in a way equivalent to the square root of the cost function, behaves in a similar way as the cost function.  Maps of the 18°C isotherm depth (Figure 6) indicate that reconstruction of the fields following assimilation of SSH data into the first baroclinic mode effectively transfers the information observed at the sea surface to deep layers.  Since the adjoint model has only one vertical layer due to the simplified dynamics, it takes much less time (around 1/30 of the computational time required by the NCOM) than the forward model run.

3.2 Idealized experiment two

This experiment is designed to simulate a more realistic scenario in which the SSH is sparsely sampled by satellite altimeters.  The model configuration is the same as in experiment one.  After the eleven-year spin-up period the NCOM is run for an additional 100 days.  Rather than assimilating the SSH field with the native model grid, the model SSH data are sampled along locations corresponding to T/P and Jason-1 observation locations every ten days.  The mapping technique is applied to interpolate the data to the native model grid in space and to a one-day interval over time between day 90 and day 99 as the observations.  The comparison between the mapped SSH data and the model truth SSH fields (Figure 7) shows that the gridded SSH constructed from the mapping method represents the original field well.  

The NCOM model state at the end of the 11-year spin-up period (before the additional 100 days of integration) is taken as the first guess of the assimilation and the same assimilation procedure is applied.  Thus, the first guess is a perturbation from the truth as they are separated in time by 90 days.  The cost function reaches 36% of its value at the first iteration after iteration six with a rapid reduction of the cost function and the normalized gradient norm during the first four iterations (Figure 4b).  The comparison between the truth and the NCOM outputs (Figure 8a) shows the improvement of the SSH field during the assimilation, e.g., the shape of the large anticyclonic eddy in the northwestern Gulf is closer to the truth; the positions and shapes of the eddies at Bay of Campeche are improved; and the shedding of an anticyclonic eddy at the end of the assimilation window is recovered.  The surface velocity field is also dynamically consistent with the SSH field.  The SSH RMSE (Figure 8b) gives a clearer comparison between the truth and the model outputs.  Two 10-day forecasts are conducted in order to show the impact of the assimilation on forecasting.  The first one takes the model state of the first guess at day 9 as the initial condition and the second one takes that of iteration 13 at day 9 as the initial condition.  The SSH RMSE (Figure 8c) of these two experiments from the truth field shows the improvement of the forecast achieved by improving the forecast initial state using the assimilation procedure.  The spatially-averaged SSH RMSE reduces from 3.6cm (the initial guess) to 2.49cm (the last iteration).
3.3 Experiment three: application to real data

The data assimilation technique is applied to a real-world case in this experiment.  The model configuration and the initial guess remain the same as in the previous experiments.  The observation fields are derived from T/P and Jason-1 along-track SSH data and the mapping method is used to interpolate the along-track data to a regular grid.  While it is acceptable for this application to assume that the observation time for each point within each ground track in the domain is the same for each cycle, the observations from different ground tracks are by no means simultaneous.  Therefore, synchronization of the data from different tracks is necessary.  The data from each track are processed first and interpolated to the same time grid with the mapping method, and then the same technique is applied to the synchronized data from all tracks as a whole data set to map the data to the model grid at one-day time intervals (Figure 9a) as the observation fields to be assimilated.  This synchronization process is described further in Yu et al. [2007].
The mapped altimeter data from 9 January 2004 through 18 January 2004 are assimilated into the NCOM model.  The first guess of the model state is chosen arbitrarily and is quite different from the observed field.  The cost function decreases to 25% of its value of the first iteration at iteration ten (Figure 4c).  Visual comparison between the observations and the model outputs (Figure 9b) and the RMSE of the model SSH relative to the gridded altimeter data (Figure 9c) show the improvement of the SSH field by assimilating the observations.  The strong anticyclonic eddy in the northwestern Gulf of Mexico, which is in the first guess but not observed by the satellite altimeters, completely disappears and the features around Cuba are successfully recovered.  The assimilation procedure has the added benefit of dynamically smoothing irregularities in the mapped SSH into a more physically realistic field.  It should be noted that for forecasting purposes, the field at the end of the assimilation cycle would be used as the initialization state for the forecast model run.  The SSH data are also compared over the along-track observation locations.  The along-track SSH RMSE computed along the altimeter ground tracks (Figure 10) behaves in a manner consistent with that of the cost function and drops to 43% of its value from the first iteration.

4. Discussion

The new variational data assimilation technique features several traits that may be attractive to the ocean modeling and forecasting community.  This method is based on the first baroclinic mode approximation, which relies on the fact that the vertical structure of the ocean can be decomposed into different vertical normal modes.  Since over much of the ocean the first baroclinic mode is dominant, it can provide a good approximation for many oceanic features of interest.  This is valid especially for observations like SSH, for which the first baroclinic mode is mainly responsible.  While in most conventional adjoint methods the adjoint model is constructed based on the forward model, for this research, it is constructed from an adjoint of a reduced gravity model with simplified dynamics.  The forward and backward models are dynamically linked by vertical normal mode decomposition and reconstruction.  As a consequence, the assimilation method is able to be designed in a modular fashion.  Therefore, it could be applied to other three-dimensional ocean models without major changes as long as the first baroclinic mode is dominant in the region being modeled.  This feature of the assimilation system is advantageous considering the extreme effort required for developing the adjoint of a complex ocean model.  Additionally, this feature aids model intercomparison studies since different models can be run with the identical data assimilation system.

Another advantage of this data assimilation method is its potential for significantly decreasing the computational cost of applying a variational approach.  Since it is based on a simplified dynamical model, the backward model requires fewer dynamical variables and is only two-dimensional (no vertical dependence) compared to the forward model with three spatial dimensions and more complicated physics.  For the application to the NCOM simulation used here, the dimension is reduced from 60 vertical layers and five prognostic variables in the forward model (and a traditional adjoint model would have the same grid size) to one vertical layer and three variables in the backward reduced gravity adjoint.  Thus the backward model has a significantly lower computational cost than would an adjoint based on the forward model.

For the application of the reduced space variational method presented here, a new technique has been used for producing regularly gridded SSH data sets from rather sparsely sampled satellite SSH observations.  This technique considers the propagation of information based on the observations from a much longer period compared to the assimilation window and obtains a data set with a finer regular grid.  This reduces the duration of the assimilation window required for the model to capture the propagation of observed features.  The preliminary results of this method indicate that it is a powerful and efficient tool for interpolating satellite along-track data.  Although the modularity of the assimilation system would permit other altimeter mapping techniques or SSH products to be used, the performance of the system crucially relies on the quality of the gridded data set and so special care should be taken when choosing the data set to assimilate.

In addition to the choice of gridded SSH product for assimilation, several other choices and assumptions have been made when applying the technique for this project, and the consequences of these choices on the effectiveness of the assimilation technique must be considered.  Vertical normal mode decomposition decomposes the ocean vertical structure into different vertical normal modes by separating the vertical dependence from each mode.  Vertical normal mode reconstruction uses the vertical dependence function (the eigenfunction) corresponding to the first baroclinic mode to update the first baroclinic component prior to reconstruction of the full model SSH, velocity, and density variables at the end of each assimilation iteration.  This allows the assimilation system to effectively transfer information observed at the ocean surface throughout the water column in the model.  Since vertical normal mode decomposition is based on the domain averaged vertical density profile in this research, a flat ocean bottom assumption is necessary.  An alternative approach is to decompose the vertical structure based on the local density profile.  However, experiments with this method showed that density inversions (which are highly unlikely in the mean profile, but can exist very localized in an instantaneous snapshot of the model fields) can lead to non-physical values of the equivalent depth.  Other techniques to deal with this issue, such as temporal filtering of the model fields, may improve the implementation of the reduced-space variational data assimilation technique.  

The conversion from the updated density fields to the temperature and salinity fields is based on their regressed relationship computed from the local profiles of these three variables.  Extrapolation, which can potentially lead to errors in the updated temperature and salinity fields, is sometimes necessary when using this algorithm, so quality control checks must be performed.  Other methods of mapping the updated density fields onto the model temperature and salinity fields could be developed and incorporated into the assimilation system in order to improve its performance.

In the data assimilation technique, the purpose of running a backward model is to compute the gradient of the cost function with respect to the model control variables.  Since the backward model in this research is based on the reduced gravity model approximating the first baroclinic mode, traditionally the cost function would have been defined in a consistent way based on the first baroclinic mode component.   However, since the only observation assumed to be available is the SSH, vertical normal mode decomposition cannot be applied to get the first baroclinic mode component of the SSH without observing the ocean’s vertical structure.  Thus, the cost function is defined using the full SSH field (that is, the distance between the full model SSH and the SSH observational field).  Though this is a reasonable approximation considering the dominance of the first baroclinic mode in the SSH field, this and other assumptions made during the application of the assimilation method lead to some unusual behavior of the cost function compared to other studies using the variational data assimilation method.  For example, the cost function is not always a monotonically decreasing function and does not always converge to a small value.

5. Summary

A new variational data assimilation technique based on the first baroclinic mode approximation of the three-dimensional ocean dynamics has been developed and tested in this study.  The results of the tests conducted with this technique demonstrate that it is a viable alternative to the conventional variational data assimilation method for assimilating satellite altimeter data into a three-dimensional ocean model.  The modular design makes the assimilation system more flexible; not only the ocean model, but also the other components of the system can be replaced with different techniques and algorithms.  For example, a different statistical interpolation algorithm, or mapping from density to temperature and salinity could be substituted rather easily.  The incorporation of the statistical interpolator and vertical normal mode decomposition contributes to a more computationally efficient data assimilation system.  The computational cost is also reduced by using an adjoint based on a one-active-layer reduced gravity model with simplified dynamics, which leads to a reduced number of dimensions and model variables in the backward model.

Forecasting mesoscale ocean processes requires accurate initial conditions that can be improved by assimilating observational data.  The application of the new data assimilation technique for initializing an ocean forecast is summarized as follows.  First, the ocean dynamics within a model region must be analyzed to ensure that the assumption that the SSH is dominated by the first baroclinic mode is valid.  Next, the forward model is integrated for some assimilation time period.  A cost function is computed, which involves the forward model SSH misfit to a prescribed SSH observational field (in the test cases, a new CEOF based interpolation method has been used to construct this SSH field from satellite altimeter data).  The three-dimensional model fields are decomposed into their vertical normal modes, and the first baroclinic mode variables are used in computing the reduced gravity adjoint model, which is integrated backward in time.  The gradient of the cost function with respect to the model control variables is used to adjust the variables to reduce the size of the cost function based on a numerical optimization method.  The adjusted first baroclinic mode variables are then substituted to reconstruct the full model fields at the beginning of the forward model integration time by summing their vertical modes.  This procedure is iterated initializing the forward model with the updated fields until the cost function asymptotes to some small value.  As a consequence of simplifications and assumptions made to the variational data assimilation method, a perfect convergence of the cost function may not be obtained.  Finally, the model fields at the end of the forward model integration at the last iteration provide a more accurate description of the state of the ocean at that time than the first guess, and can be used to initialize an ocean model forecast.

The main goal of this study is to develop a new effective and efficient method for assimilating satellite altimeter data that can be applied to a number of different ocean models.  The method has been successfully applied to a model of the Gulf of Mexico that has high resolution in all three spatial dimensions.  Experiments have been conducted to test the effectiveness of the method, and to demonstrate its applicability to a real-world case by assimilating an SSH data set produced from satellite altimeter data using a new gridding technique.  It is not assumed that all the choices made for these tests will ultimately prove to be the best.  Nevertheless, the technique shows great promise for future studies and possibly operational implementation.  The quality and performance of the assimilation system can likely be improved by replacing some algorithms used in the application of this research with other options, which shows the advantage of the modularly designed system.

APPENDIX A

VERTICAL NORMAL MODE DECOMPOSITION FROM NCOM EQUATIONS

Following Philander (1990), a method of computing vertical normal modes is derived from the NCOM model equations.  The NCOM equations are as given in continuous form in equations (2.17-2.22).  The model equations are simplified as follows.  

First, the equation of state is simplified to a linear form as
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where 
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So the time dependence of density can be written as
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Expanding the material time derivative as
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allows equations (2.9) and (2.10) be substituted to obtain the form
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where the subscript z stands for 
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By again using equation (1A) it can be shown that
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and
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Substituting (5A) and (6A) into (4A) gives a prognostic equation for density
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that can replace equations (2.21) to (2.23).  Equation (7A) and equations (2.17-2.20) are the reduced set of equations.

The problem needs to be further simplified by linearization of the above equations.  To linearize these equations it is necessary to assume that the ocean, in its basic state, is motionless and has density
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With these assumptions and neglecting the source term Q and solar radiation Qr, the linearized unforced NCOM equations become
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The method of separation of variables is applied by assuming
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where m is the mode number and M is the upper limit for m which goes to infinity for continuous functions.

Substitution yields
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where the subscript m has been dropped.  By rewriting (20A) as
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where h is the constant of separation, one gets
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Separating the z-dependence in (18A) and (19A) yields
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and
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Both (24A) and (25A) lead to 
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Plugging (23A) into (26A) yields
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which is integrate vertically to arrive at the relation
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where C is an arbitrary constant.

Assuming 
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The boundary conditions are
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Substituting (16A) and (17A) into (31A) leads to
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Thus, the vertical normal mode decomposition problem is reduced to the following equations.
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with boundary conditions
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 (36A) along with the boundary conditions (38A) and (39A) is a Sturm-Liouville problem, and the discrete version is an eigenvalue problem, which can be solved via standard numerical methods.  (33A), (34A) and (35A) are governing equations for each mode, which are shallow-water equations.

From (36A) and (37A), the equation for R is
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Based on the Sturm-Liouville general solution, the eigenfunctions, Rn, form a complete set and are orthogonal in the sense that
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The baroclinic modes can be obtained as
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So,
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Similarly,
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APPENDIX B

DERIVATION OF THE ADJOINT OF THE REDUCED GRAVITY MODEL

Adjoint equations are derived from the equations for a reduced gravity ocean model, using the calculus of variations and forming a Lagrange cost function by adding the constraints multiplied by the Lagrange multipliers.

The cost function is defined as
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Assuming the observation errors at different locations are uncorrelated and constant observation error variances reduces Km to a constant.  So (1B) can be rewritten as
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where 
[image: image124.wmf]u

l

, 
[image: image125.wmf]v

l

 and 
[image: image126.wmf]h

l

 are the adjoint variables with respect to the control variables, U, V and 
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.  At the minimum of the cost function, F has a stationary point, and its first derivative with respect to all control variables must vanish.  In order to find the adjoint equations, one has to set the first derivative of the associated Lagrange function zero, i.e.,
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and
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 (3B) is considered first:
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where the initial conditions, 
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So, the governing equation for 
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 is 
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Similarly, when (4B) is considered,
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So, the governing equation for 
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 is
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Consider (5B),
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Similarly,
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So, the governing equation for 
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 is 
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Reorganize the above equations
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For the scaling purposes, let
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, and the equations become
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