|   | 
Details
   web
Records
Author Godinez, H.C.; Reisner, J.M.; Fierro, A.O.; Guimond, S.R.; Kao, J.
Title Determining Key Model Parameters of Rapidly Intensifying Hurricane Guillermo (1997) Using the Ensemble Kalman Filter Type $loc['typeJournal Article']
Year 2012 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.
Volume 69 Issue 11 Pages 3147-3171
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4928 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 236
Permanent link to this record
 

 
Author Goff, J.A.; Arbic, B.K.
Title Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness Type $loc['typeJournal Article']
Year 2010 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 32 Issue 1-2 Pages 36-43
Keywords Abyssal hills; Roughness; Prediction; Ocean modeling
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 345
Permanent link to this record
 

 
Author Goni, G.; DeMaria, M.; Knaff, J.; Sampson, C.; Ginis, I.; Bringas, F.; Mavume, A.; Lauer, C.; Lin, I.I.; Ali, M.M.; Sandery, P.; Ramos-Buarque, S.; Kang, K.R.; Mehra, A.; Chassignet, E.; Halliwell, G.
Title Applications of Satellite-Derived Ocean Measurements to Tropical Cyclone Intensity Forecasting Type $loc['typeJournal Article']
Year 2009 Publication Oceanography Abbreviated Journal Oceanog.
Volume 22 Issue 3 Pages 190-197
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1042-8275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 384
Permanent link to this record
 

 
Author González-Rodríguez, E.; Trasviña-Castro, A.; Gaxiola-Castro, G.; Zamudio, L.; Cervantes-Duarte, R.
Title Net primary productivity, upwelling and coastal currents in the Gulf of Ulloa, Baja California, México Type $loc['typeJournal Article']
Year 2012 Publication Ocean Science Abbreviated Journal Ocean Sci.
Volume 8 Issue 4 Pages 703-711
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1812-0792 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 258
Permanent link to this record
 

 
Author Goodrick, S. L.; Bourassa, M. A.; Legler, D. M.
Title Impact of Correcting Marine Wind Observations on Air-Sea Flux Fields in the North Atlantic Type $loc['typeConference Article']
Year 1998 Publication CAS/JSC Working Group on Numerical Experimentation, Research Activities in Atmospheric and Oceanic Modeling, World Meteorological Organization Abbreviated Journal
Volume Issue Pages 2.7-2.8
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Staniforth, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 754
Permanent link to this record
 

 
Author Goto, Y.
Title Improved Vegetation Characterization and Freeze Statistics in a Regional Spectral Model for the Florida Citrus Farming Region Type $loc['typeManuscript']
Year 2008 Publication Abbreviated Journal
Volume Issue Pages
Keywords Ensemble Forecast, Climate Model
Abstract This study focused on the effective use of a numerical climate model for agriculture in Florida, especially in the citrus farming region of the Florida peninsula, because of the impact of agriculture to Florida's economy. For the analyses of the ensemble, the climate models used in this study were the FSU/COAPS Global Spectral Model and FSU/COAPS Regional Spectral Model (FSU/COAPS RSM) coupled with a land-surface model. The multi-convective scheme method and variable initial conditions were used for the ensembles. Severe freezes impacting agriculture in Florida were associated with some major climate patterns, such as El Niño and Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). In the first part of this study, seasonal ensemble integrations of the regional model were examined for the tendencies of freezes in the Florida peninsula during each ENSO or NAO phase is examined. Mean excess values of minimum temperatures from thresholds on the basis of the Generalized Pareto Distribution (GPD), which represents the extreme data in a dataset, were used to analyze the freezes in the regional model. According to some previous studies, El Niño winters obtain fewer freezes than the other ENSO phases. Although the ensemble comprised only 19 winters, the ensemble found variability patterns in minimum temperatures in each climate phase similar to the findings in the previous studies which were based on the observed data. The FSU/COAPS RSM was coupled with Community Land Model 2.0 (CLM2), to represent the land-surface conditions. Although the coupling improved the temperature forecast of the RSM, it still has a cold bias and simulates smaller diurnal temperature changes than actually occur in southern Florida. Among the prescribed surface data, Leaf Area Index (LAI) for southern Florida in the CLM2 is lower than those observed by MODIS (Moderate Resolution Imaging Spectroradiometer). In the first experiment of this part, the sensitivity of the temperature forecast to the LAI in the climate models was investigated, by modifying the LAI data in the CLM2 based on the monthly MODIS observations. In the second experiment, newly created prescribed datasets of LAI and plant functional types for the CLM2 based on the MODIS observations were applied to the RSM. The substitution increased the diurnal temperature change in southern Florida slightly but almost consistently.
Address Department of Meteorology
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 586
Permanent link to this record
 

 
Author Goto, Y.; Shin, D. W.; O'Brien, J. J.
Title Sensitivity of leaf area index in Florida to temperature simulation by FSURSM Type $loc['typeReport']
Year 2006 Publication Abbreviated Journal
Volume Issue Pages 5-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, CAS/JSC Working Group on Numerical Experimentation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 930
Permanent link to this record
 

 
Author Goto-Maeda, Y.; Shin, D.W.; O'Brien, J.J.
Title Freeze probability of Florida in a regional climate model and climate indices Type $loc['typeJournal Article']
Year 2008 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 35 Issue 11 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 411
Permanent link to this record
 

 
Author Gouillon, F
Title Internal Wave Propagation and Numerically Induced Diapycnal Mixing in Oceanic General Circulation Models Type $loc['typeManuscript']
Year 2010 Publication Abbreviated Journal
Volume Issue Pages
Keywords spurious mixing, numerical modeling, internal wave, tide
Abstract Numerical ocean models have become powerful tools for providing a realistic view of the ocean state and for describing ocean processes that are difficult to observe. Recent improvements in model performance focus on simulating realistic ocean interior mixing rates, as ocean mixing is the main physical process that creates water masses and maintains their properties. Below the mixed layer, diapycnal mixing primarily arises from the breaking of internal waves, whose energy is largely supplied by winds and tides. This is particularly true in abyssal regions, where the barotropic tide interacts with rough topography and where high levels of diapycnal mixing have been recorded (e.g., the Hawaiian Archipelago). Many studies have discussed the representation of internal wave generation, propagation, and evolution in ocean numerical models. Expanding on these studies, this work seeks to better understand the representation of internal wave dynamics, energetics, and their associated mixing in several different classes of widely used ocean models (e.g., the HYbrid Coordinate Ocean Model, HYCOM; the Regional Ocean Modeling System, ROMS; and the MIT general circulation model, MITgcm). First, a multi-model study investigates the representation of internal waves for a wide spectrum of numerical choices, such as the horizontal and vertical resolution, the vertical coordinate, and the choice of the numerical advection scheme. Idealized configurations are compared to their corresponding analytical solutions. Some preliminary results of realistic baroclinic tidal simulations are shown for the Gulf of Mexico. Second, the spurious diapycnal mixing that exists in models with fixed vertical coordinates (i.e., geopotential and terrain following) is documented and quantified. This purely numerical error arises because, in fixed-coordinate models, the numerical framework cannot properly maintain the adiabatic properties of an advected water parcel. This unrealistic mixing of water masses can be a source of major error in both regional and global ocean models. We use the tracer flux method to compute the spurious diapycnal diffusivities for both a lockexchange scenario and a propagating internal wave field using all three models. Results for the lock exchange experiments are compared to the results of a recent study. Our results, obtained by using three different model classes, provide a comprehensive analysis of the impact of model resolution choice and numerical framework on the magnitude of the spurious diapycnal mixing and the representation of internal waves.
Address Department of Oceanography
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 571
Permanent link to this record
 

 
Author Gouillon, F.
Title Internal wave generation over a ridge using the HYbrid Coordinate Ocean Model (HYCOM) Type $loc['typeConference Article']
Year 2008 Publication AGU, Orlando, FL Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 689
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)