Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  doi
openurl 
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 98-113  
  Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas  
  Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1034  
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  openurl
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 98-113  
  Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas  
  Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1036  
Permanent link to this record
 

 
Author Jones, B. url  openurl
  Title Influence of Panamanian Wind Jets on the Southeast Intertropical Convergence Zone Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Central American Wind Jets  
  Abstract Gridded QuikSCAT data has been used to show that a strong confluence zone of the Southeast Pacific Intertropical Convergence Zone (SITCZ) existed in 2000 � 2002 during boreal spring, and the Panama wind jet contributes to its variability. Time series analysis of winds off the Gulf of Panama and convergence advection into the Southern Hemisphere (from 80W to 95W) show these winds kept the SE Trades out of the Northern Hemisphere and created a confluent zone in the Southern Hemisphere. A monthly averaged SITCZ is maintained by the deceleration of the SE Trades that flow from warm water toward the equatorial cold tongue, creating a speed convergent zone south of the equator. Images of wind trajectories show zonally orientated SE Trade winds that were deflected from a divergent zone parallel to the coast of South America converge with more meridional Trades over warm waters. Panamanian winds crossed into the Southern Hemisphere to contribute to this convergence. It is hypothesized that this confluent zone can be intensified by the Panamanian winds. In 2002, the SITCZ confluent zone occurred with more intense Panamanian gap flow than the previous two years. Cross equatorial SE Trades wrapped anti-cyclonically around a divergent pocket in the Northern Hemisphere and became southward winds, which allowed the Panamanian winds to enter the Southern Hemisphere and intensify the SITCZ. Variability in the Panamanian winds makes a substantial contribution to the evolution of the SITCZ.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding OSU, NASA, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 623  
Permanent link to this record
 

 
Author Jones, C. S.; Shriver, J. F.; O'Brien, J. J. url  openurl
  Title The Effects of El Nino on Rainfall and Fire in Florida Type $loc['typeJournal Article']
  Year 1999 Publication The Florida Geographer Abbreviated Journal  
  Volume 30 Issue Pages 55-69  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 771  
Permanent link to this record
 

 
Author Jones, J.; Legler, D. M.; Arkin, G. F.; Hansen, J. W. openurl 
  Title Climate impacts – major finds and recommendations for agriculture Type $loc['typeConference Article']
  Year 1997 Publication Workshop on climate variability and water resource management in the southeastern United States Abbreviated Journal  
  Volume Issue Pages 29-34  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher NASA Place of Publication Nashville, TN Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 728  
Permanent link to this record
 

 
Author Jones, J. W.; Hansen, J. W.; O'Brien, J. J.; Podesta, G.; Zazueta, F. openurl 
  Title Agricultural Applications of Climate Predictions: Bridging the Gap between Research and its Application in the SE USA Type $loc['typeConference Article']
  Year 2000 Publication , International Forum on Climate Prediction, Agriculture and Development Abbreviated Journal  
  Volume Issue Pages 59-66  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 800  
Permanent link to this record
 

 
Author Jones, W.B.; O'Brien, J.J. url  doi
openurl 
  Title Pseudo-spectral methods and linear instabilities in reaction-diffusion fronts Type $loc['typeJournal Article']
  Year 1996 Publication Chaos (Woodbury, N.Y.) Abbreviated Journal Chaos  
  Volume 6 Issue 2 Pages 219-228  
  Keywords  
  Abstract We explore the application of a pseudo-spectral Fourier method to a set of reaction-diffusion equations and compare it with a second-order finite difference method. The prototype cubic autocatalytic reaction-diffusion model as discussed by Gray and Scott [Chem. Eng. Sci. 42, 307 (1987)] with a nonequilibrium constraint is adopted. In a spatial resolution study we find that the phase speeds of one-dimensional finite amplitude waves converge more rapidly for the spectral method than for the finite difference method. Furthermore, in two dimensions the symmetry preserving properties of the spectral method are shown to be superior to those of the finite difference method. In studies of plane/axisymmetric nonlinear waves a symmetry breaking linear instability is shown to occur and is one possible route for the formation of patterns from infinitesimal perturbations to finite amplitude waves in this set of reaction-diffusion equations. (c) 1996 American Institute of Physics.  
  Address Advanced Systems Division, Silicon Graphics Inc., Mountain View, California 94043-1389COAPS, Florida State University, Tallahassee, Florida 32306-3041  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1054-1500 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:12780250 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 714  
Permanent link to this record
 

 
Author Josey, S. A.; Smith, S. R. openurl 
  Title Guidelines for evaluation of air-sea heat, freshwater, and momentum flux datasets Type $loc['typeMiscellaneous']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages 14  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher National Oceanography Center Place of Publication Southampton, UK Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 939  
Permanent link to this record
 

 
Author Kalnay, E.; Cai, M.; Nunez, M.; Lim, Y.-K. url  openurl
  Title Impacts of urbanization and land surface changes on climate trends Type $loc['typeMagazine Article']
  Year 2008 Publication Urban Climate News Abbreviated Journal  
  Volume 27 Issue Pages 5-9  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 685  
Permanent link to this record
 

 
Author Kara, A. B. url  openurl
  Title A Fine Resolution Hybrid Coordinate Ocean Model (HYCOM) for the Black Sea with a New Solar Radiation Penetration Scheme Type $loc['typeManuscript']
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Solar Penetration, Ocean Circulation, Ocean Turbidity  
  Abstract  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 593  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)