|   | 
Details
   web
Records
Author Jardak, M.; Navon, I.M.
Title Spectral stochastic two-scale convergence method for parabolic PDEs Type $loc['typeJournal Article']
Year 2011 Publication International Journal for Numerical Methods in Engineering Abbreviated Journal Int. J. Numer. Meth. Engng.
Volume 85 Issue 7 Pages 847-873
Keywords two-scale convergence method; periodic homogenization; Karhunen–Loève expansions; Wiener polynomial chaos; spectral methods
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-5981 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 374
Permanent link to this record
 

 
Author Jardak, M.; Navon, I.M.; Zupanski, M.
Title Comparison of sequential data assimilation methods for the Kuramoto-Sivashinsky equation Type $loc['typeJournal Article']
Year 2009 Publication International Journal for Numerical Methods in Fluids Abbreviated Journal Int. J. Numer. Meth. Fluids
Volume Issue Pages
Keywords sequential data assimilation; ensemble Kalman filter; particle filter; Kuramoto–Sivashinsky equation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-2091 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 375
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1035
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 98-113
Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas
Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1034
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 98-113
Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas
Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1036
Permanent link to this record
 

 
Author Jones, B.
Title Influence of Panamanian Wind Jets on the Southeast Intertropical Convergence Zone Type $loc['typeManuscript']
Year 2004 Publication Abbreviated Journal
Volume Issue Pages
Keywords Central American Wind Jets
Abstract Gridded QuikSCAT data has been used to show that a strong confluence zone of the Southeast Pacific Intertropical Convergence Zone (SITCZ) existed in 2000 � 2002 during boreal spring, and the Panama wind jet contributes to its variability. Time series analysis of winds off the Gulf of Panama and convergence advection into the Southern Hemisphere (from 80W to 95W) show these winds kept the SE Trades out of the Northern Hemisphere and created a confluent zone in the Southern Hemisphere. A monthly averaged SITCZ is maintained by the deceleration of the SE Trades that flow from warm water toward the equatorial cold tongue, creating a speed convergent zone south of the equator. Images of wind trajectories show zonally orientated SE Trade winds that were deflected from a divergent zone parallel to the coast of South America converge with more meridional Trades over warm waters. Panamanian winds crossed into the Southern Hemisphere to contribute to this convergence. It is hypothesized that this confluent zone can be intensified by the Panamanian winds. In 2002, the SITCZ confluent zone occurred with more intense Panamanian gap flow than the previous two years. Cross equatorial SE Trades wrapped anti-cyclonically around a divergent pocket in the Northern Hemisphere and became southward winds, which allowed the Panamanian winds to enter the Southern Hemisphere and intensify the SITCZ. Variability in the Panamanian winds makes a substantial contribution to the evolution of the SITCZ.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding OSU, NASA, NSF Approved $loc['no']
Call Number COAPS @ mfield @ Serial 623
Permanent link to this record
 

 
Author Jones, C. S.; Shriver, J. F.; O'Brien, J. J.
Title The Effects of El Nino on Rainfall and Fire in Florida Type $loc['typeJournal Article']
Year 1999 Publication The Florida Geographer Abbreviated Journal
Volume 30 Issue Pages 55-69
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 771
Permanent link to this record
 

 
Author Jones, J.; Legler, D. M.; Arkin, G. F.; Hansen, J. W.
Title Climate impacts – major finds and recommendations for agriculture Type $loc['typeConference Article']
Year 1997 Publication Workshop on climate variability and water resource management in the southeastern United States Abbreviated Journal
Volume Issue Pages 29-34
Keywords
Abstract
Address
Corporate Author Thesis
Publisher NASA Place of Publication Nashville, TN Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 728
Permanent link to this record
 

 
Author Jones, J. W.; Hansen, J. W.; O'Brien, J. J.; Podesta, G.; Zazueta, F.
Title Agricultural Applications of Climate Predictions: Bridging the Gap between Research and its Application in the SE USA Type $loc['typeConference Article']
Year 2000 Publication , International Forum on Climate Prediction, Agriculture and Development Abbreviated Journal
Volume Issue Pages 59-66
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 800
Permanent link to this record
 

 
Author Jones, W.B.; O'Brien, J.J.
Title Pseudo-spectral methods and linear instabilities in reaction-diffusion fronts Type $loc['typeJournal Article']
Year 1996 Publication Chaos (Woodbury, N.Y.) Abbreviated Journal Chaos
Volume 6 Issue 2 Pages 219-228
Keywords
Abstract We explore the application of a pseudo-spectral Fourier method to a set of reaction-diffusion equations and compare it with a second-order finite difference method. The prototype cubic autocatalytic reaction-diffusion model as discussed by Gray and Scott [Chem. Eng. Sci. 42, 307 (1987)] with a nonequilibrium constraint is adopted. In a spatial resolution study we find that the phase speeds of one-dimensional finite amplitude waves converge more rapidly for the spectral method than for the finite difference method. Furthermore, in two dimensions the symmetry preserving properties of the spectral method are shown to be superior to those of the finite difference method. In studies of plane/axisymmetric nonlinear waves a symmetry breaking linear instability is shown to occur and is one possible route for the formation of patterns from infinitesimal perturbations to finite amplitude waves in this set of reaction-diffusion equations. (c) 1996 American Institute of Physics.
Address Advanced Systems Division, Silicon Graphics Inc., Mountain View, California 94043-1389COAPS, Florida State University, Tallahassee, Florida 32306-3041
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1054-1500 ISBN Medium
Area Expedition Conference
Funding PMID:12780250 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 714
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)