Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krishnamurti, T.N.; Rajendran, K.; Vijaya Kumar, T.S.V.; Lord, S.; Toth, Z.; Zou, X.; Cocke, S.; Ahlquist, J.E.; Navon, I.M. url  doi
openurl 
  Title Improved Skill for the Anomaly Correlation of Geopotential Heights at 500 hPa Type $loc['typeJournal Article']
  Year 2003 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 131 Issue 6 Pages 1082-1102  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 842  
Permanent link to this record
 

 
Author Kumar, V.; Jana, S.; Bhardwaj, A.; Deepa, R.; Sahu, S.K.; Pradhan, P.K.; Sirdas, S.A. url  doi
openurl 
  Title Greenhouse Gas Emission, Rainfall and Crop Production Over North-Western India Type $loc['typeJournal Article']
  Year 2018 Publication The Open Ecology Journal Abbreviated Journal  
  Volume 11 Issue 1 Pages 47-61  
  Keywords  
  Abstract Background: This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011. Results: The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others. Conclusion: Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-2130 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1024  
Permanent link to this record
 

 
Author Kumar, V.; Jana, S.; Bhardwaj, A.; Deepa, R.; Sahu, S.K.; Pradhan, P.K.; Sirdas, S.A. url  doi
openurl 
  Title Greenhouse Gas Emission, Rainfall and Crop Production Over North-Western India Type $loc['typeJournal Article']
  Year 2018 Publication The Open Ecology Journal Abbreviated Journal TOECOLJ  
  Volume 11 Issue 1 Pages 47-61  
  Keywords Greenhouse gases, CH4, Climate Variability, Emissions, Crop production, Rainfall.  
  Abstract Background:

This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011.

Results:

The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others.

Conclusion:

Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-2130 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1017  
Permanent link to this record
 

 
Author Kvaleberg, E.; Morey, S. L.; O'Brien, J. J. openurl 
  Title Modeling frontal instabilities in the Gulf of Mexico Type $loc['typeReport']
  Year Publication Abbreviated Journal  
  Volume Issue Pages 08.08-08.09  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 33 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 871  
Permanent link to this record
 

 
Author Kvaleberg, E.; Morey, S. L.; O'Brien, J. J. openurl 
  Title Type $loc['typeReport']
  Year 2004 Publication The influence of Coriolis on instability wavelengths Abbreviated Journal  
  Volume Issue Pages 08.11-08.12  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 34 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 893  
Permanent link to this record
 

 
Author LaCasce, J.H.; Escartin, J.; Chassignet, E.P.; Xu, X. url  doi
openurl 
  Title Jet instability over smooth, corrugated and realistic bathymetry Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume Issue Pages  
  Keywords  
  Abstract The stability of a horizontally- and vertically-sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth which are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow anti-parallel to topographic wave propagation), and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer.

A ridge with a 1 km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echosounding reveal that such heights are common, beneath the Kuroshio, the Antarctic Circumpolar Current and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus lateral instability may be more common than previously thought, due to topography hindering vertical energy transfer.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 998  
Permanent link to this record
 

 
Author LaRow, T. E.; Cocke, S. openurl 
  Title Methods for Multi¬Model Proxies for Climate Studies Type $loc['typeNewspaper Article']
  Year 2004 Publication CLIVAR Exchanges Newsletter Abbreviated Journal  
  Volume Issue Spring Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 887  
Permanent link to this record
 

 
Author LaRow, T. E.; Cocke, S.; Shin, D. W. openurl 
  Title Multi-convection as a multi-model proxy for seasonal climate studies Type $loc['typeMagazine Article']
  Year 2003 Publication CLIVAR Exchanges Abbreviated Journal  
  Volume 28 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 867  
Permanent link to this record
 

 
Author Laurencin, C.; Misra, V. url  doi
openurl 
  Title Characterizing the Variations of the motion of the North Atlantic tropical cyclones Type $loc['typeJournal Article']
  Year 2018 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 130 Issue 303 Pages 1-12  
  Keywords climatology; interannual scales; environment  
  Abstract In this study, we examine the seasonal and interannual variability of the North Atlantic (NATL) tropical cyclone (TC) motion from the historical Hurricane Database (HURDAT2) over the period 1988-2014. We characterize these motions based on their position, lifecycle, and seasonal cycle. The main findings of this study include: (1) of the 11,469 NATL TC fixes examined between 1988 and 2014, 81% of them had a translation speed of < 20 mph; (2) TCs in the deep tropics of the NATL are invariably slow-moving in comparison with TCs in higher latitudes. Although fast-moving TCs (> 40 mph) are exclusively found north of 30 N, the slow-moving TCs have a wide range of latitude. This is largely a consequence of the background steering flow being weaker (stronger) in the tropical (higher) latitudes with a minimum around the subtropical latitudes of NATL; (3) there is an overall decrease in the frequency of all categories of translation speed of TCs in warm relative to cold El Niño Southern Oscillation (ENSO) years. However, in terms of the percentage change, TCs with a translation speed in the range of 10-20 mph display the most change (42%) in warm relative to cold ENSO years; and (4) there is an overall decrease in frequency across all categories of TC translation speed in small relative to large Atlantic Warm Pool years, but in terms of percentage change in the frequency of TCs, there is a significant and comparable change in the frequency over a wider range of translation speeds than the ENSO composites. This last finding suggests that Atlantic Warm Pool variations have a more profound impact on the translation speed of Atlantic TCs than ENSO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 991  
Permanent link to this record
 

 
Author Laxenaire, R., Speich, S., & Alexandre S url  openurl
  Title Evolution of the thermohaline structure of one Agulhas Ring reconstructed from satellite altimetry and Argo floats. Journal of Geophysical Research Type $loc['typeJournal Article']
  Year 2019 Publication Oceans Abbreviated Journal  
  Volume 124 Issue 12 Pages 8969-9003  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1096  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)