Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title Monitoring the Indian Summer Monsoon Evolution at the Granularity of the Indian Meteorological Sub-divisions using Remotely Sensed Rainfall Products Type $loc['typeJournal Article']
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 11 Issue 9 Pages 1080  
  Keywords Indian Summer Monsoon; GPM; TRMM satellite precipitation; meteorological sub-divisions  
  Abstract We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions. View Full-Text  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1026  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title The role of air-sea coupling in the downscaled hydroclimate projection over Peninsular Florida and the West Florida Shelf Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 53 Issue 5-6 Pages 2931-2947  
  Keywords  
  Abstract A comparative analysis of two sets of downscaled simulations of the current climate and the future climate projections over Peninsular Florida (PF) and the West Florida Shelf (WFS) is presented to isolate the role of high-resolution air-sea coupling. In addition, the downscaled integrations are also compared with the much coarser, driving global model projection to examine the impact of grid resolution of the models. The WFS region is habitat for significant marine resources, which has both commercial and recreational value. Additionally, the hydroclimatic features of the WFS and PF contrast each other. For example, the seasonal cycle of surface evaporation in these two regions are opposite in phase to one another. In this study, we downscale the Community Climate System Model version 4 (CCSM4) simulations of the late twentieth century and the mid-twenty-first century (with reference concentration pathway 8.5 emission scenario) using an atmosphere only Regional Spectral Model (RSM) at 10 km grid resolution. In another set, we downscale the same set of CCSM4 simulations using the coupled RSM-Regional Ocean Model System (RSMROMS) at 10 km grid resolution. The comparison of the twentieth century simulations suggest significant changes to the SST simulation over WFS from RSMROMS relative to CCSM4, with the former reducing the systematic errors of the seasonal mean SST over all seasons except in the boreal summer season. It may be noted that owing to the coarse resolution of CCSM4, the comparatively shallow bathymetry of the WFS and the sharp coastline along PF is poorly defined, which is significantly rectified at 10 km grid spacing in RSMROMS. The seasonal hydroclimate over PF and the WFS in the twentieth century simulation show significant bias in all three models with CCSM4 showing the least for a majority of the seasons, except in the wet June-July-August (JJA) season. In the JJA season, the errors of the surface hydroclimate over PF is the least in RSMROMS. The systematic errors of surface precipitation and evaporation are more comparable between the simulations of CCSM4 and RSMROMS, while they differ the most in moisture flux convergence. However, there is considerable improvement in RSMROMS compared to RSM simulations in terms of the seasonal bias of the hydroclimate over WFS and PF in all seasons of the year. This suggests the potential rectification impact of air-sea coupling on dynamic downscaling of CCSM4 twentieth century simulations. In terms of the climate projection in the decades of 2041-2060, the RSMROMS simulation indicate significant drying of the wet season over PF compared to moderate drying in CCSM4 and insignificant changes in the RSM projection. This contrasting projection is also associated with projected warming of SSTs along the WFS in RSMROMS as opposed to warming patterns of SST that is more zonal and across the WFS in CCSM4.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1082  
Permanent link to this record
 

 
Author Boisserie, M.; LaRow, T.; Cocke, S. D.; Shin, D. W. openurl 
  Title Comparison of Soil Moisture in the FSU Climate Model Coupled to a Land Model CLM2 to Soil Moisture from NCEP/DOE Reanalysis 2 Type $loc['typeReport']
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, CAS/JSC Working Group on Numerical Experimentation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 905  
Permanent link to this record
 

 
Author Bourassa, M. A. url  doi
openurl 
  Title Satellite-based observations of surface turbulent stress during severe weather Type $loc['typeJournal Article']
  Year 2006 Publication Atmosphere-Ocean Interactions Abbreviated Journal  
  Volume 2 Issue Pages 35-52  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wessex Institute of Technology Place of Publication Editor Perrie, W.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding FYAP, NASA, NOAA, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 914  
Permanent link to this record
 

 
Author Bourassa, M. A.; Hughes, P. J. openurl 
  Title Computationally fast and accurate surface turbulent fluxes Type $loc['typeReport']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages 4:01-02  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title CAS/JSC Working Group on Numerical Experimentation, Research Activities in Atmospheric and Oceanic Modeling Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 921  
Permanent link to this record
 

 
Author Bourassa, M. A.; Smith, S. R. openurl 
  Title Uncertainties in monthly wind fields Type $loc['typeReport']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Climate Observation Program 4th Annual System Review, NOAA, Silver Spring, MD, USA Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 935  
Permanent link to this record
 

 
Author Bourassa, M. A.; Smith, S. R.; Hughes, P.; Rolph, J. openurl 
  Title Atlantic monthly air-sea fluxes and the 2005 hurricanes Type $loc['typeJournal Article']
  Year 2006 Publication Bulletin of the American Meteorological Society Abbreviated Journal  
  Volume 87 (State of the Climate in 2005) Issue Pages 535  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA, OCO, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 937  
Permanent link to this record
 

 
Author Bourassa, M.A., and P.J. Hughes url  doi
openurl 
  Title Surface Heat Fluxes and Wind Remote Sensing Type $loc['typeBook Chapter']
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 245-270  
  Keywords HEAT; OCEAN SURFACE; WINDS; SCATTEROMETERS; FLUXE; STRESS; RESPONSES  
  Abstract The exchange of heat and momentum through the air-sea surface are critical aspects of ocean forcing and ocean modeling. Over most of the global oceans, there are few in situ observations that can be used to estimate these fluxes. This chapter provides background on the calculation and application of air-sea fluxes, as well as the use of remote sensing to calculate these fluxes. Wind variability makes a large contribution to variability in surface fluxes, and the remote sensing of winds is relatively mature compared to the air sea differences in temperature and humidity, which are the other key variables. Therefore, the remote sensing of wind is presented in greater detail. These details enable the reader to understand how the improper use of satellite winds can result in regional and seasonal biases in fluxes, and how to calculate fluxes in a manner that removes these biases. Examples are given of high-resolution applications of fluxes, which are used to indicate the strengths and weakness of satellite-based calculations of ocean surface fluxes.  
  Address  
  Corporate Author Thesis  
  Publisher GODAE OceanView Place of Publication Tallahassee, FL Editor Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 947  
Permanent link to this record
 

 
Author Bruno-Piverger, R.E. url  openurl
  Title Applying Neural Networks to Simulate Visual Inspection of Observational Weather Data Type $loc['typeJournal Article']
  Year 2019 Publication Florida State University College of Arts and Sciences, Master's Thesis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1090  
Permanent link to this record
 

 
Author Carstens, J url  openurl
  Title Tropical Cyclogenesis from Self-aggregated Convection in Numerical Simulations of Rotating Radiative-convective Equilibrium Type $loc['typeManuscript']
  Year 2019 Publication Dissertations & Theses Abbreviated Journal Dissertations & Theses  
  Volume Issue Pages  
  Keywords  
  Abstract Organized convection is of critical importance in the tropical atmosphere. Recent advances in numerical modeling have revealed that moist convection can interact with its environment to transition from a quasi-random to organized state. This phenomenon, known as convective self-aggregation,is aided by feedbacks involving clouds, water vapor, and radiation that increase the spatial variance of column-integrated frozen moist static energy. Prior studies have shown self-aggregation to takeseveral different forms, including that of spontaneous tropical cyclogenesis in an environment of rotating radiative-convective equilibrium (RCE). This study expands upon previous work to address the processes leading to tropical cyclogenesis in this rotating RCE framework. More specifically,a three-dimensional, cloud-resolving numerical model is used to examine the self-aggregation of convection and potential cyclogenesis, and the background planetary vorticity is varied on an f-plane across simulations to represent a range of deep tropical and near-equatorial environments.Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic-scale forcing.All simulations with planetary vorticity corresponding to latitudes from 10°to 20°generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five-member ensemble of 20°simulations, reflecting a potential degree of stochastic variability based in part on the initial random distribution of convection. Shared across this so-called “high-f” group is the emergence of a midlevel vortex in the days leading to genesis,which has dynamic and thermodynamic implications on its environment that facilitate the spinup of a low-level vortex. Tropical cyclogenesis is possible in this model even at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self-aggregates into a quasi-circular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by near-surface inflow and shallow overturning radial circulations aloft within the aggregated cluster. Other experiments at these lower Coriolis parameters instead self-aggregate into an elongated band and fail to undergo cyclogenesis over the 100-day simulation. A large portion of this study is devoted to examining in greater detail the dynamic and thermodynamic evolution of cyclogenesis in these experiments and comparing the physical mechanisms to current theories.  
  Address  
  Corporate Author Thesis  
  Publisher Florida State University - FCLA; ProQuest Dissertations & Theses Global Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1054  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)