Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Hood, M., and 39 Coauthors (including S. R. Smith) url  doi
openurl 
  Title Ship-Based Repeat Hydrography: A Strategy for a Sustained Global Program Type $loc['typeConference Article']
  Year 2010 Publication Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society Abbreviated Journal  
  Volume 2 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hall, J., Harrison, D.E. and Stammer, D.ll  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 563  
Permanent link to this record
 

 
Author Bourassa, M. A., H. Bonekamp, P. Chang, D. Chelton, J. Courtney, R. Edson, J. Figa, Y. He, H. Hersbach, K. Hilburn, Z. Jelenak, T. Lee, W. T. Liu, D. Long, K. Kelly, R. Knabb, E. Lindstorm, W. Perrie, M. Portabella, M. Powell, E. Rodriguez, D. Smith, A. Stoffelen, V. Swail, F. Wentz url  doi
openurl 
  Title Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling Type $loc['typeConference Article']
  Year 2010 Publication Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society Abbreviated Journal  
  Volume 2 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hall, J., Harrison, D.E. and Stammer, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 559  
Permanent link to this record
 

 
Author González-Rodríguez, E.; Trasviña-Castro, A.; Gaxiola-Castro, G.; Zamudio, L.; Cervantes-Duarte, R. url  doi
openurl 
  Title Net primary productivity, upwelling and coastal currents in the Gulf of Ulloa, Baja California, México Type $loc['typeJournal Article']
  Year 2012 Publication Ocean Science Abbreviated Journal Ocean Sci.  
  Volume 8 Issue 4 Pages 703-711  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1812-0792 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 258  
Permanent link to this record
 

 
Author Shin, D. W., G. A. Baigorria, Y.-K. Lim, S. Cocke, T. E. LaRow, J. J. O'Brien, and J. W. Jones url  openurl
  Title Assessing Crop Yield Simulations with Various Seasonal Climate Data Type $loc['typeMagazine Article']
  Year 2009 Publication Science and Technology Infusion Climate Bulletin Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 662  
Permanent link to this record
 

 
Author Coles, V.J.; Stukel, M.R.; Brooks, M.T.; Burd, A.; Crump, B.C.; Moran, M.A.; Paul, J.H.; Satinsky, B.M.; Yager, P.L.; Zielinski, B.L.; Hood, R.R. url  doi
openurl 
  Title Ocean biogeochemistry modeled with emergent trait-based genomics Type $loc['typeJournal Article']
  Year 2017 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 358 Issue 6367 Pages 1149-1154  
  Keywords  
  Abstract  
  Address Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Post Office Box 775, Cambridge, MD 21613, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:29191900 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 552  
Permanent link to this record
 

 
Author Zhang, M.; Zhang, Y.; Shu, Q.; Zhao, C.; Wang, G.; Wu, Z.; Qiao, F. url  doi
openurl 
  Title Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean Type $loc['typeJournal Article']
  Year 2018 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 612 Issue Pages 1141-1148  
  Keywords Chlorophyll a; Dipole pattern; Multidimensional ensemble empirical mode decomposition; Propagation; Spatiotemporal evolution; The variable trend  
  Abstract Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability. Here, the spatiotemporal evolution of the chla trend in the North Atlantic Ocean for the period 1997-2016 is analyzed using the multidimensional ensemble empirical mode decomposition method. We find that this variable trend signal of chla shows a dipole pattern between the subpolar gyre and along the Gulf Stream path, and propagation along the opposite direction of the North Atlantic Current. This propagation signal has an overlapping variability of approximately twenty years. Our findings suggest that the spatiotemporal evolution of chla during the two most recent decades is part of the multidecadal variations and possibly regulated by the changes of Atlantic Meridional Overturning Circulation, whereas the mechanisms of such evolution patterns still need to be explored.  
  Address First Institute of Oceanography, State Oceanic Administration, Qingdao, China; Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Data Analysis and Applications, State Oceanic Administration, Qingdao, China. Electronic address: qiaofl@fio.org.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:28892858 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 363  
Permanent link to this record
 

 
Author Harris, R.; Pollman, C.; Hutchinson, D.; Landing, W.; Axelrad, D.; Morey, S.L.; Dukhovskoy, D.; Vijayaraghavan, K. url  doi
openurl 
  Title A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 53-63  
  Keywords Animals; Calibration; Environmental Exposure; Fishes/metabolism; Humans; Mercury/*chemistry/metabolism; *Models, Theoretical; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.  
  Address Reed Harris Environmental Ltd., 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23102631 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 234  
Permanent link to this record
 

 
Author Harris, R.; Pollman, C.; Landing, W.; Evans, D.; Axelrad, D.; Hutchinson, D.; Morey, S.L.; Rumbold, D.; Dukhovskoy, D.; Adams, D.H.; Vijayaraghavan, K.; Holmes, C.; Atkinson, R.D.; Myers, T.; Sunderland, E. url  doi
openurl 
  Title Mercury in the Gulf of Mexico: sources to receptors Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 42-52  
  Keywords Air Pollutants/chemistry; Animals; Environmental Exposure; Food Chain; Geologic Sediments/chemistry; Humans; Mercury/*chemistry/metabolism; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web.  
  Address Reed Harris Environmental Ltd, 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23098613 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 233  
Permanent link to this record
 

 
Author Powell, M.D.; Cocke, S. url  doi
openurl 
  Title Hurricane wind fields needed to assess risk to offshore wind farms Type $loc['typeJournal Article']
  Year 2012 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 109 Issue 33 Pages E2192; author reply E2193-4  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:22829670; PMCID:PMC3421164 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 241  
Permanent link to this record
 

 
Author Adams, D.K.; McGillicuddy, D.J.J.; Zamudio, L.; Thurnherr, A.M.; Liang, X.; Rouxel, O.; German, C.R.; Mullineaux, L.S. url  doi
openurl 
  Title Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents Type $loc['typeJournal Article']
  Year 2011 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 332 Issue 6029 Pages 580-583  
  Keywords  
  Abstract Atmospheric forcing, which is known to have a strong influence on surface ocean dynamics and production, is typically not considered in studies of the deep sea. Our observations and models demonstrate an unexpected influence of surface-generated mesoscale eddies in the transport of hydrothermal vent efflux and of vent larvae away from the northern East Pacific Rise. Transport by these deep-reaching eddies provides a mechanism for spreading the hydrothermal chemical and heat flux into the deep-ocean interior and for dispersing propagules hundreds of kilometers between isolated and ephemeral communities. Because the eddies interacting with the East Pacific Rise are formed seasonally and are sensitive to phenomena such as El Nino, they have the potential to introduce seasonal to interannual atmospheric variations into the deep sea.  
  Address Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. dadams@whoi.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:21527710 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 307  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)