|   | 
Details
   web
Records
Author DiNapoli, S
Title Determining the Error Characteristics of H*WIND Type $loc['typeManuscript']
Year 2010 Publication Abbreviated Journal
Volume Issue Pages
Keywords Hurricane, Tropical Cyclones, Wind Analysis, Uncertainty
Abstract The HRD Real-time Hurricane Wind Analysis System (H*Wind) is a software application used by NOAA's Hurricane Research Division to create a gridded tropical cyclone wind analysis based on a wide range of observations. One application of H*Wind fields is calibration of scatterometers for high wind speed environments. Unfortunately, the accuracy of the H*Wind product has not been studied extensively, and therefore the accuracy of scatterometer calibrations in these environments is also unknown. This investigation seeks to determine the uncertainty in the H*Wind product and estimate the contributions of several potential error sources. These error sources include random observation errors, relative bias between different data types, temporal drift resulting from combining non-simultaneous measurements, and smoothing and interpolation errors in the H*Wind software. The effects of relative bias between different data types and random observation errors are determined by performing statistical calculations on the observed wind speeds. We show that in the absence of large biases, the total contribution of all error sources results in an uncertainty of approximately 7% near the storm center, which increases to nearly 15% near the tropical storm force wind radius. The H*Wind analysis algorithm is found to introduce a positive bias to the wind speeds near the storm center, where the analyzed wind speeds are enhanced to match the highest observations. In addition, spectral analyses are performed to ensure that the filter wavelength of the final analysis product matches user specifications. With increased knowledge of these error sources and their effects, researchers will have a better understanding of the uncertainty in the H*Wind product, and can then judge the suitability of H*Wind for various research applications
Address Department of Earth, Ocean, and Atmospheric Science
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 574
Permanent link to this record
 

 
Author Dombrowsky, E.; Bertino, L.; Brassington, G.; Chassignet, E.; Davidson, F.; Hurlburt, H.; Kamachi, M.; Lee, T.; Martin, M.; Mei, S.; Tonani, M.
Title GODAE Systems in Operation Type $loc['typeJournal Article']
Year 2009 Publication Oceanography Abbreviated Journal Oceanog.
Volume 22 Issue 3 Pages 80-95
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1042-8275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 382
Permanent link to this record
 

 
Author Domingues, R.; Kuwano-Yoshida, A.; Chardon-Maldonado, P.; Todd, R.E.; Halliwell, G.; Kim, H.-S.; Lin, I.-I.; Sato, K.; Narazaki, T.; Shay, L.K.; Miles, T.; Glenn, S.; Zhang, J.A.; Jayne, S.R.; Centurioni, L.; Le Hénaff, M.; Foltz, G.R.; Bringas, F.; Ali, M.M.; DiMarco, S.F.; Hosoda, S.; Fukuoka, T.; LaCour, B.; Mehra, A.; Sanabia, E.R.; Gyakum, J.R.; Dong, J.; Knaff, J.A.; Goni, G.
Title Ocean Observations in Support of Studies and Forecasts of Tropical and Extratropical Cyclones Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages 446
Keywords
Abstract Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1043
Permanent link to this record
 

 
Author Dukhovskoy, D.; Johnson, M.; Proshutinsky, A.
Title Arctic decadal variability from an idealized atmosphere-ice-ocean model: 1. Model description, calibration, and validation Type $loc['typeJournal Article']
Year 2006 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 111 Issue C6 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding NSF Approved $loc['no']
Call Number COAPS @ mfield @ Serial 437
Permanent link to this record
 

 
Author Dukhovskoy, D.; Johnson, M.; Proshutinsky, A.
Title Arctic decadal variability from an idealized atmosphere-ice-ocean model: 2. Simulation of decadal oscillations Type $loc['typeJournal Article']
Year 2006 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 111 Issue C6 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 436
Permanent link to this record
 

 
Author Dukhovskoy, D.S.
Title Arctic decadal variability: An auto-oscillatory system of heat and fresh water exchange Type $loc['typeJournal Article']
Year 2004 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 31 Issue 3 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding NSF Approved $loc['no']
Call Number COAPS @ mfield @ Serial 461
Permanent link to this record
 

 
Author Dukhovskoy, D. S.; Morey, S. L.; O'Brien, J. J.
Title Topographic Rossby Waves in a Z-Level Ocean Model Type $loc['typeReport']
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 03.05-03.06
Keywords
Abstract
Address
Corporate Author Thesis
Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.
Language Summary Language Original Title
Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 35 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding ONR, NASA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 903
Permanent link to this record
 

 
Author Dukhovskoy, D. S.; Morey, S. L.; O'Brien, J. J.
Title Topographic Rossby waves in a z-level ocean model Type $loc['typeMagazine Article']
Year 2005 Publication Eos Trans. AGU Abbreviated Journal
Volume 86 Issue 18 Pages Jt. Assem. Suppl., Abstract OS22A-06
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding ONR, NASA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 909
Permanent link to this record
 

 
Author Dukhovskoy, D. S.; Morey, S. L.; O'Brien, J. J.
Title Baroclinic topographic waves on the Nicaragua Shelf generated by tropical cyclones Type $loc['typeReport']
Year 2006 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.
Language Summary Language Original Title
Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 36 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding ONR, NASA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 924
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Morey, S.L.; Martin, P.J.; O'Brien, J.J.; Cooper, C.
Title Application of a vanishing, quasi-sigma, vertical coordinate for simulation of high-speed, deep currents over the Sigsbee Escarpment in the Gulf of Mexico Type $loc['typeJournal Article']
Year 2009 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 28 Issue 4 Pages 250-265
Keywords Numerical models; Deep currents; Topographic waves; Numerical truncation error; Vertical discretization; Sigsbee Escarpment; Gulf of Mexico
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 399
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)