|   | 
Details
   web
Records
Author Jackson, L.C.; Dubois, C.; Forget, G.; Haines, K.; Harrison, M.; Iovino, D.; Köhl, A.; Mignac, D.; Masina, S.; Peterson, K.A.; Piecuch, C.G.; Roberts, C.D.; Robson, J.; Storto, A.; Toyoda, T.; Valdivieso, M.; Wilson, C.; Wang, Y.; Zuo, H.
Title The Mean State and Variability of the North Atlantic Circulation: A Perspective From Ocean Reanalyses Type $loc['typeJournal Article']
Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 124 Issue 12 Pages 8969-9003
Keywords
Abstract The transfer of Indian Ocean thermocline and intermediate waters into the South Atlantic via the Agulhas leakage is generally believed to be primarily accomplished through mesoscale eddy processes, essentially anticyclones known as Agulhas Rings. Here we take advantage of a recent eddy tracking algorithm and Argo float profiles to study the evolution and the thermohaline structure of one of these eddies over the course of 1.5 years (May 2013–November 2014). We found that during this period the ring evolved according to two different phases: During the first one, taking place in winter, the mixing layer in the eddy deepened significantly. During the second phase, the eddy subsided below the upper warmer layer of the South Atlantic subtropical gyre while propagating west. The separation of this eddy from the sea surface could explain the decrease in its surface signature in satellite altimetry maps, suggesting that such changes are not due to eddy dissipation processes. It is a very large eddy (7.1×1013 m3 in volume), extending, after subduction, from a depth of 200–1,200 m and characterized by two mode water cores. The two mode water cores represent the largest eddy heat and salt anomalies when compared with the surrounding. In terms of its impact over 1 year, the north‐westward propagation of this long‐lived anticyclone induces a transport of 2.2 Sv of water, 0.008 PW of heat, and 2.2×105 kg s−1 of salt. These results confirm that Agulhas Rings play a very important role in the Indo‐Atlantic interocean exchange of heat and salt.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1080
Permanent link to this record
 

 
Author Karmakar, N.; Misra, V.
Title The Relation of Intraseasonal Variations With Local Onset and Demise of the Indian Summer Monsoon Type $loc['typeJournal Article']
Year 2019 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res. Atmos.
Volume 124 Issue 5 Pages 2483-2506
Keywords hydroclimatic, Indian Summer Monsoon, Intraseasonal Oscillations, eastern Indiawestward propagating
Abstract Two of the most important hydroclimatic features of the Indian Summer Monsoon (ISM) rainfall are its onset/demise and Intraseasonal Oscillations (ISOs) manifested by the active‐break cycles. In this study, we aim to understand the quantitative association between these two phenomena. An objective definition of local onset/demise of the ISM based on more than a century‐long India Meteorological Department (IMD) rain‐gauge observation is taken into consideration. Using multichannel singular spectrum analysis (MSSA) we isolate northward propagating low‐ (20–60 days; LF‐ISO) and northwestward propagating high‐ (10–20 days; HF‐ISO) frequency ISOs from the daily ISM rainfall. Our results suggest that a large number of local onset (59%) and demise (62%) events occur during positive developing phases and positive decaying phases of two ISOs, respectively, with phase‐locking between LF‐ISO and HF‐ISO being particularly important. Local onset is largely associated with favorable phases of ISOs across India except for LF‐ISO over eastern India and HF‐ISO over western Ghats and central India (CI). We find that local demise is more coherent with the ISO phases, especially with HF‐ISO across the domain. We performed a case study to understand large‐scale association with the onset of the ISM over CI. In 44 of total 58 cases (1948–2005), when CI onset occurred during favorable LF‐ISO or HF‐ISO phase, they are either linked with a northward propagation of convection from the equator in LF‐ISO timescale (28 cases) or westward propagating structures from the western Pacific in HF‐ISO timescale (27 cases).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-897X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1014
Permanent link to this record
 

 
Author Nelson, A.D.; Arbic, B.K.; Zaron, E.D.; Savage, A.C.; Richman, J.G.; Buijsman, M.C.; Shriver, J.F.
Title Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model Type $loc['typeJournal Article']
Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 124 Issue 9 Pages 6632-6641
Keywords
Abstract Semidiurnal baroclinic tide sea surface height (SSH) variance and semidiurnal nonstationary variance fraction (SNVF) are compared between a hydrodynamic model and altimetry for the low- to middle-latitude global ocean. Tidal frequencies are aliased by similar to 10-day altimeter sampling, which makes it impossible to unambiguously identify nonstationary tidal signals from the observations. In order to better understand altimeter sampling artifacts, the model was analyzed using its native hourly outputs and by subsampling it in the same manner as altimeters. Different estimates of the semidiurnal nonstationary and total SSH variance are obtained with the model depending on whether they are identified in the frequency domain or wave number domain and depending on the temporal sampling of the model output. Five sources of ambiguity in the interpretation of the altimetry are identified and briefly discussed. When the model and altimetry are analyzed in the same manner, they display qualitatively similar spatial patterns of semidiurnal baroclinic tides. The SNVF typically correlates above 80% at all latitudes between the different analysis methods and above 60% between the model and altimetry. The choice of analysis methodology was found to have a profound effect on estimates of the semidiurnal baroclinic SSH variance with the wave number domain methodology underestimating the semidiurnal nonstationary and total SSH variances by 68% and 66%, respectively. These results produce a SNVF estimate from altimetry that is biased low by a factor of 0.92. This bias is primarily a consequence of the ambiguity in the separation of tidal and mesoscale signals in the wave number domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1086
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Yashayaev, I.; Proshutinsky, A.; Bamber, J.L.; Bashmachnikov, I.L.; Chassignet, E.P.; Lee, C.M.; Tedstone, A.J.
Title Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic Type $loc['typeJournal Article']
Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 124 Issue 5 Pages 3333-3360
Keywords Greenland ice sheet melting; freshwater anomaly; subpolar North Atlantic; subpolar gyre; passive tracer numerical experiment; freshwater budget
Abstract The cumulative Greenland freshwater flux anomaly has exceeded 5000 km3 since the 1990s. The volume of this surplus fresh water is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveal freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50�100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of fresh water have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1029
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A.
Title The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures Type $loc['typeJournal Article']
Year 2020 Publication Atmospheric Science Letters Abbreviated Journal Atmos Sci Lett
Volume 21 Issue 3 Pages 9658-9689
Keywords
Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-261X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1100
Permanent link to this record
 

 
Author Rahaman, H.; Srinivasu, U.; Panickal, S.; Durgadoo, J.V.; Griffies, S.M.; Ravichandran, M.; Bozec, A.; Cherchi, A.; Voldoire, A.; Sidorenko, D..; Chassignet, E.P.; Danabasoglu, G.; Tsujino, H.; Getzlaff, K.; Ilicak, M.; Bentsen, M.; Long, M.C.; Fogli, P.G.; Farneti, R.; Danilov, S.; Marsland, S.J.; Valcke, S.; Yeager, S.G.; Wang, Q.
Title An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
Year 2020 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 145 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1087
Permanent link to this record
 

 
Author Timko, P.G.; Arbic, B.K.; Hyder, P.; Richman, J.G.; Zamudio, L.; O'Dea, E.; Wallcraft, A.J.; Shriver, J.F.
Title Assessment of shelf sea tides and tidal mixing fronts in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 136 Issue Pages 66-84
Keywords HYCOM; tides; seasonal tidal mixing
Abstract Tidal mixing fronts, which represent boundaries between stratified and tidally mixed waters, are locations of enhanced biological activity. They occur in summer shelf seas when, in the presence of strong tidal currents, mixing due to bottom friction balances buoyancy production due to seasonal heat flux. In this paper we examine the occurrence and fidelity of tidal mixing fronts in shelf seas generated within a global 3-dimensional simulation of the HYbrid Coordinate Ocean Model (HYCOM) that is simultaneously forced by atmospheric fields and the astronomical tidal potential. We perform a first order assessment of shelf sea tides in global HYCOM through comparison of sea surface temperature, sea surface tidal elevations, and tidal currents with observations. HYCOM was tuned to minimize errors in M2 sea surface heights in deep water. Over the global coastal and shelf seas (depths <200&#8239;m) the area-weighted root mean square error of the M2 sea surface amplitude in HYCOM represents 35% of the 50&#8239;cm root mean squared M2 sea surface amplitude when compared to satellite constrained models TPXO8 and FES2014. HYCOM and the altimeter constrained tidal models TPXO8 and FES2014 exhibit similar skill in reproducing barotropic tidal currents estimated from in-situ current meter observations. Through comparison of a global HYCOM simulation with tidal forcing to a global HYCOM simulation with no tides, and also to previous regional studies of tidal mixing fronts in shelf seas, we demonstrate that HYCOM with embedded tides exhibits quite high skill in reproducing known tidal mixing fronts in shelf seas. Our results indicate that the amount of variability in the location of the tidal mixing fronts in HYCOM, estimated using the Simpson-Hunter parameter, is consistent with previous studies when the differences in the net downward heat flux, on a global scale, are taken into account. We also provide evidence of tidal mixing fronts on the North West Australian Shelf for which we have been unable to find references in the existing scientific literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1032
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 98-113
Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas
Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1034
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1035
Permanent link to this record
 

 
Author Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R.
Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 140 Issue Pages 14-25
Keywords CALIFORNIA CURRENT ECOSYSTEM; OCEAN CARBON-CYCLE; COASTAL WATERS; FRONTAL ZONE; TIME-SERIES; FLUX; SINKING; SEA; PACIFIC; ZOOPLANKTON
Abstract Estimating interannual variability in carbon export is a key goal of many marine biogeochemical studies. However, due to variations in export mechanisms between regions, generalized models used to estimate global patterns in export often fail when used for intra-regional analysis. We present here a region-specific model of export production for the California Current Ecosystem (CCE) parameterized using intensive Lagrangian process studies conducted during El Niño-Southern Oscillation (ENSO) warm and neutral phases by the CCE Long-Term Ecological Research (LTER) program. We find that, contrary to expectations from prominent global algorithms, export efficiency (e-ratio = export / primary productivity) is positively correlated with temperature and negatively correlated with net primary productivity (NPP). We attribute these results to the substantial horizontal advection found within the region, and verify this assumption by using a Lagrangian particle tracking model to estimate water mass age. We further suggest that sinking particles in the CCE are comprised of a recently-produced, rapidly-sinking component (likely mesozooplankton fecal pellets) and a longer-lived, slowly-sinking component that is likely advected long distances prior to export. We determine a new algorithm for estimating particle export in the CCE from NPP (Export = 0.08 · NPP + 72 mg C m-2 d-1). We apply this algorithm to a two-decade long time series of NPP in the CCE to estimate spatial and interannual variability across multiple ENSO phases. Reduced export during the warm anomaly of 2014-2015 and El Niño 2015-2016 resulted primarily from decreased export in the coastal upwelling region of the CCE; the oligotrophic offshore region exhibited comparatively low seasonal and interannual variability in flux. The model resolves intra-regional patterns of in situ export measurements, and provides a valuable contrast to global export models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 984
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)