Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Scott, R., M. Bourassa, D. Chelton, P. Cipollini, R. Ferrari, L.-L. Fu, B., Galperin, S. Gille, H.-P. Huang, P. Klein, N. Maximenko, R. Morrow, B. Qiu, E. Rodriguez, D. Stammer, R. Tailleux, and C. Wunsch url  doi
openurl 
  Title Satellite Altimetry and Key Observations: What We've Learned, and What's Possible with New Technologies Type $loc['typeConference Article']
  Year 2010 Publication Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society Abbreviated Journal  
  Volume 2 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hall, J., Harrison, D.E. and Stammer, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 561  
Permanent link to this record
 

 
Author Hood, M., and 39 Coauthors (including S. R. Smith) url  doi
openurl 
  Title Ship-Based Repeat Hydrography: A Strategy for a Sustained Global Program Type $loc['typeConference Article']
  Year 2010 Publication Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society Abbreviated Journal  
  Volume 2 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hall, J., Harrison, D.E. and Stammer, D.ll  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 563  
Permanent link to this record
 

 
Author Bourassa, M. A., H. Bonekamp, P. Chang, D. Chelton, J. Courtney, R. Edson, J. Figa, Y. He, H. Hersbach, K. Hilburn, Z. Jelenak, T. Lee, W. T. Liu, D. Long, K. Kelly, R. Knabb, E. Lindstorm, W. Perrie, M. Portabella, M. Powell, E. Rodriguez, D. Smith, A. Stoffelen, V. Swail, F. Wentz url  doi
openurl 
  Title Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling Type $loc['typeConference Article']
  Year 2010 Publication Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society Abbreviated Journal  
  Volume 2 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hall, J., Harrison, D.E. and Stammer, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 559  
Permanent link to this record
 

 
Author Shin, D. W., G. A. Baigorria, Y.-K. Lim, S. Cocke, T. E. LaRow, J. J. O'Brien, and J. W. Jones url  openurl
  Title Assessing Crop Yield Simulations with Various Seasonal Climate Data Type $loc['typeMagazine Article']
  Year 2009 Publication Science and Technology Infusion Climate Bulletin Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 662  
Permanent link to this record
 

 
Author Coles, V.J.; Stukel, M.R.; Brooks, M.T.; Burd, A.; Crump, B.C.; Moran, M.A.; Paul, J.H.; Satinsky, B.M.; Yager, P.L.; Zielinski, B.L.; Hood, R.R. url  doi
openurl 
  Title Ocean biogeochemistry modeled with emergent trait-based genomics Type $loc['typeJournal Article']
  Year 2017 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 358 Issue 6367 Pages 1149-1154  
  Keywords  
  Abstract  
  Address Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Post Office Box 775, Cambridge, MD 21613, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:29191900 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 552  
Permanent link to this record
 

 
Author Zeng, H.; Chambers, J.Q.; Negron-Juarez, R.I.; Hurtt, G.C.; Baker, D.B.; Powell, M.D. url  doi
openurl 
  Title Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000 Type $loc['typeJournal Article']
  Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 106 Issue 19 Pages 7888-7892  
  Keywords Biodiversity; Biomass; Carbon; *Cyclonic Storms; Ecosystem; Greenhouse Effect; Models, Statistical; Southeastern United States; *Trees; United States  
  Abstract Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance.  
  Address Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Center, New Orleans, LA 70118, USA. hzeng@tulane.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:19416842; PMCID:PMC2683102 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 658  
Permanent link to this record
 

 
Author Jones, W.B.; O'Brien, J.J. url  doi
openurl 
  Title Pseudo-spectral methods and linear instabilities in reaction-diffusion fronts Type $loc['typeJournal Article']
  Year 1996 Publication Chaos (Woodbury, N.Y.) Abbreviated Journal Chaos  
  Volume 6 Issue 2 Pages 219-228  
  Keywords  
  Abstract We explore the application of a pseudo-spectral Fourier method to a set of reaction-diffusion equations and compare it with a second-order finite difference method. The prototype cubic autocatalytic reaction-diffusion model as discussed by Gray and Scott [Chem. Eng. Sci. 42, 307 (1987)] with a nonequilibrium constraint is adopted. In a spatial resolution study we find that the phase speeds of one-dimensional finite amplitude waves converge more rapidly for the spectral method than for the finite difference method. Furthermore, in two dimensions the symmetry preserving properties of the spectral method are shown to be superior to those of the finite difference method. In studies of plane/axisymmetric nonlinear waves a symmetry breaking linear instability is shown to occur and is one possible route for the formation of patterns from infinitesimal perturbations to finite amplitude waves in this set of reaction-diffusion equations. (c) 1996 American Institute of Physics.  
  Address Advanced Systems Division, Silicon Graphics Inc., Mountain View, California 94043-1389COAPS, Florida State University, Tallahassee, Florida 32306-3041  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1054-1500 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:12780250 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 714  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A.; Viswanthan, K.; Schmutz, D. url  doi
openurl 
  Title The potential role of land cover on secular changes of the hydroclimate of Peninsular Florida Type $loc['typeJournal Article']
  Year 2018 Publication Climate and Atmospheric Science Abbreviated Journal Clim Atmos Sci  
  Volume 1 Issue 1 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3722 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 833  
Permanent link to this record
 

 
Author Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. url  doi
openurl 
  Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Climate Abbreviated Journal Climate  
  Volume 6 Issue 3 Pages 71  
  Keywords ocean heat content; tropical cyclone heat potential; dominant modes; North Indian Ocean; SUMMER MONSOON; INTENSIFICATION; INTENSITY; PACIFIC  
  Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean-atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus farparticularly in the North Indian Ocean (NIO)has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998-2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2225-1154 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 986  
Permanent link to this record
 

 
Author Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. url  doi
openurl 
  Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
  Year 2019 Publication Climate Abbreviated Journal Climate  
  Volume 6 Issue 71 Pages 1 – 8  
  Keywords  
  Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean–atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus far—particularly in the North Indian Ocean (NIO)—has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998–2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2225-1154 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1030  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)