Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Williford, C. E.; Krishnamurti, T.N.; Torres, R.C.; Cocke, S.; Christidis, Z.; Vijaya Kumar, T.S. url  doi
openurl 
  Title Real-Time Multimodel Superensemble Forecasts of Atlantic Tropical Systems of 1999 Type $loc['typeJournal Article']
  Year 2003 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 131 Issue 8 Pages 1878-1894  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 839  
Permanent link to this record
 

 
Author Devanas, A.; Stefanova, L. url  doi
openurl 
  Title Statistical Prediction Of Waterspout Probability For The Florida Keys Type $loc['typeJournal Article']
  Year 2018 Publication Weather and Forecasting Abbreviated Journal Wea. Forecasting  
  Volume 33 Issue Pages 389-410  
  Keywords Regression analysis; Forecast verification/skill; Forecasting techniques; Probability forecasts/models/distribution; Statistical forecasting  
  Abstract A statistical model of waterspout probability was developed for wet-season (June–September) days over the Florida Keys. An analysis was performed on over 200 separate variables derived from Key West 1200 UTC daily wet-season soundings during the period 2006–14. These variables were separated into two subsets: days on which a waterspout was reported anywhere in the Florida Keys coastal waters and days on which no waterspouts were reported. Days on which waterspouts were reported were determined from the National Weather Service (NWS) Key West local storm reports. The sounding at Key West was used for this analysis since it was assumed to be representative of the atmospheric environment over the area evaluated in this study. The probability of a waterspout report day was modeled using multiple logistic regression with selected predictors obtained from the sounding variables. The final model containing eight separate variables was validated using repeated fivefold cross validation, and its performance was compared to that of an existing waterspout index used as a benchmark. The performance of the model was further validated in forecast mode using an independent verification wet-season dataset from 2015–16 that was not used to define or train the model. The eight-predictor model was found to produce a probability forecast with robust skill relative to climatology and superior to the benchmark waterspout index in both the cross validation and in the independent verification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0882-8156 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 553  
Permanent link to this record
 

 
Author Ahern, K.; Bourassa, M.A.; Hart, R.E.; Zhang, J.A.; Rogers, R.F. url  doi
openurl 
  Title Observed Kinematic and Thermodynamic Structure in the Hurricane Boundary Layer During Intensity Change Type $loc['typeJournal Article']
  Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume Issue Pages  
  Keywords  
  Abstract The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency &#8805; 20 kt (24 h)&#8722;1], weakening [WE; intensity tendency < &#8722;10 kt (24 h)&#8722;1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3,091 dropsondes were composited for analysis below 2.5 km elevation—1,086 during IN, 1,042 during WE, and 963 during SS. In non-intensifying hurricanes, the lowlevel tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I) at those radii for non-intensifying hurricanes. Differences in tangential wind structure (and I) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Non-intensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (&#952;e) and conditional stability are highest inside the RMW of non-intensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer &#952;e is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1031  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title Defining the Northeast Monsoon of India Type $loc['typeJournal Article']
  Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 147 Issue 3 Pages 791-807  
  Keywords Indian Summer Monsoon, intraseasonal,Climate models, variability, NEM, rainfall  
  Abstract This study introduces an objective definition for onset and demise of the Northeast Indian Monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850hPa winds, surface wind stress, surface ocean currents, and upper ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño&#65533;Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 999  
Permanent link to this record
 

 
Author Holbach, H.M.; Uhlhorn, E.W.; Bourassa, M.A. url  doi
openurl 
  Title Off-Nadir SFMR Brightness Temperature Measurements in High-Wind Conditions Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Atmospheric and Oceanic Technology Abbreviated Journal J. Atmos. Oceanic Technol.  
  Volume 35 Issue 9 Pages 1865-1879  
  Keywords Tropical cyclones; Wind; Air-sea interaction; Microwave observations; Remote sensing; Surface observations  
  Abstract Wind and wave-breaking directions are investigated as potential sources of an asymmetry identified in off-nadir remotely sensed measurements of ocean surface brightness temperatures obtained by the Stepped Frequency Microwave Radiometer (SFMR) in high-wind conditions, including in tropical cyclones. Surface wind speed, which dynamically couples the atmosphere and ocean, can be inferred from SFMR ocean surface brightness temperature measurements using a radiative transfer model and an inversion algorithm. The accuracy of the ocean surface brightness temperature to wind speed calibration relies on accurate knowledge of the surface variables that are influencing the ocean surface brightness temperature. Previous studies have identified wind direction signals in horizontally polarized radiometer measurements in low to moderate (0&#65533;20 m s&#8722;1) wind conditions over a wide range of incidence angles. This study finds that the azimuthal asymmetry in the off-nadir SFMR brightness temperature measurements is also likely a function of wind direction and extends the results of these previous studies to high-wind conditions. The off-nadir measurements from the SFMR provide critical data for improving the understanding of the relationships between brightness temperature, surface wave&#65533;breaking direction, and surface wind vectors at various incidence angles, which is extremely useful for the development of geophysical model functions for instruments like the Hurricane Imaging Radiometer (HIRAD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0739-0572 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 980  
Permanent link to this record
 

 
Author Steffen, J.; Bourassa, M. url  doi
openurl 
  Title Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 9 Pages 1951-1968  
  Keywords SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC  
  Abstract The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 970  
Permanent link to this record
 

 
Author Xu, X.; Rhines, P.B.; Chassignet, E.P. url  doi
openurl 
  Title On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 10 Pages 2233-2258  
  Keywords Atmosphere-ocean interaction; Boundary currents; Diapycnal mixing; Fronts; Thermocline circulation  
  Abstract Diapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly focused on the transformation that is forced by surface buoyancy fluxes, and the role of interior mixing is much less known. This study maps the three-dimensional structure of the diapycnal transformation, both surface forced and mixing induced, using results of a high-resolution numerical model that have been shown to represent the large-scale structure of the AMOC and the North Atlantic subpolar/subtropical gyres well. The analyses show that 1) annual mean transformation takes place seamlessly from the subtropical to the subpolar North Atlantic following the surface buoyancy loss along the northward-flowing upper AMOC limb; 2) mixing, including wintertime convection and warm-season restratification by mesoscale eddies in the mixed layer and submixed layer diapycnal mixing, drives transformations of (i) Subtropical Mode Water in the southern part of the subtropical gyre and (ii) Labrador Sea Water in the Labrador Sea and on its southward path in the western Newfoundland Basin; and 3) patterns of diapycnal transformations toward lighter and denser water do not align zonally&#65533;the net three-dimensional transformation is significantly stronger than the zonally integrated, two-dimensional AMOC streamfunction (50% in the southern subtropical North Atlantic and 60% in the western subpolar North Atlantic).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 951  
Permanent link to this record
 

 
Author Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J. url  doi
openurl 
  Title Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 6 Pages 1409-1431  
  Keywords Baroclinic flows; Internal waves; Nonlinear dynamics; Ocean dynamics; Baroclinic models; Ocean models  
  Abstract The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%&#65533;10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 976  
Permanent link to this record
 

 
Author Zhang, M.; Wu, Z.; Qiao, F. url  doi
openurl 
  Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 20 Pages 8541-8555  
  Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC  
  Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 950  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A. url  doi
openurl 
  Title Simulation of the Intraseasonal Variations of the Indian Summer Monsoon in a Regional Coupled Ocean-Atmosphere Model Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 8 Pages 3167-3185  
  Keywords Asia; Indian Ocean; Mixed layer; Monsoons; Atmosphere-ocean interaction; Regional models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 557  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)