|   | 
Details
   web
Records
Author (up) Murty, V.S.N.; Subrahmanyam, B.; Sarma, M.S.S.; Tilvi, V.; Ramesh Babu, V.
Title Estimation of sea surface salinity in the Bay of Bengal using Outgoing Longwave Radiation Type $loc['typeJournal Article']
Year 2002 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 29 Issue 16 Pages 22-1-22-4
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 826
Permanent link to this record
 

 
Author (up) Müller, M.; Arbic, B.K.; Mitrovica, J.X.
Title Secular trends in ocean tides: Observations and model results Type $loc['typeJournal Article']
Year 2011 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 116 Issue C5 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 306
Permanent link to this record
 

 
Author (up) Nakano, H.; Suginohara, N.
Title Importance of the eastern Indian Ocean for the abyssal Pacific Type $loc['typeJournal Article']
Year 2002 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.
Volume 107 Issue C12 Pages 12-1-12-14
Keywords Indian Ocean; Adélie; circumpolar deep water
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 827
Permanent link to this record
 

 
Author (up) Nakano, H.; Suginohara, N.
Title A Series of Middepth Zonal Flows in the Pacific Driven by Winds Type $loc['typeJournal Article']
Year 2002 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 32 Issue 1 Pages 161-176
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 828
Permanent link to this record
 

 
Author (up) Nakano, H.; Suginohara, N.
Title Effects of Bottom Boundary Layer Parameterization on Reproducing Deep and Bottom Waters in a World Ocean Model Type $loc['typeJournal Article']
Year 2002 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 32 Issue 4 Pages 1209-1227
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 829
Permanent link to this record
 

 
Author (up) Nelson, A.D.; Arbic, B.K.; Zaron, E.D.; Savage, A.C.; Richman, J.G.; Buijsman, M.C.; Shriver, J.F.
Title Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model Type $loc['typeJournal Article']
Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 124 Issue 9 Pages 6632-6641
Keywords
Abstract Semidiurnal baroclinic tide sea surface height (SSH) variance and semidiurnal nonstationary variance fraction (SNVF) are compared between a hydrodynamic model and altimetry for the low- to middle-latitude global ocean. Tidal frequencies are aliased by similar to 10-day altimeter sampling, which makes it impossible to unambiguously identify nonstationary tidal signals from the observations. In order to better understand altimeter sampling artifacts, the model was analyzed using its native hourly outputs and by subsampling it in the same manner as altimeters. Different estimates of the semidiurnal nonstationary and total SSH variance are obtained with the model depending on whether they are identified in the frequency domain or wave number domain and depending on the temporal sampling of the model output. Five sources of ambiguity in the interpretation of the altimetry are identified and briefly discussed. When the model and altimetry are analyzed in the same manner, they display qualitatively similar spatial patterns of semidiurnal baroclinic tides. The SNVF typically correlates above 80% at all latitudes between the different analysis methods and above 60% between the model and altimetry. The choice of analysis methodology was found to have a profound effect on estimates of the semidiurnal baroclinic SSH variance with the wave number domain methodology underestimating the semidiurnal nonstationary and total SSH variances by 68% and 66%, respectively. These results produce a SNVF estimate from altimetry that is biased low by a factor of 0.92. This bias is primarily a consequence of the ambiguity in the separation of tidal and mesoscale signals in the wave number domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1086
Permanent link to this record
 

 
Author (up) Neto, A.G.; Palter, J.; Bower, A.; Furey, H.; Xu. X.
Title Labrador Sea Water transport across the Charlie-Gibbs Fracture Zone Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume Accepted Issue Pages
Keywords
Abstract Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid‐Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25‐year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993‐2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1108
Permanent link to this record
 

 
Author (up) Nof, D.; Jia, Y.; Chassignet, E.; Bozec, A.
Title Fast Wind-Induced Migration of Leddies in the South China Sea Type $loc['typeJournal Article']
Year 2011 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 41 Issue 9 Pages 1683-1693
Keywords Eddies; Seas; gulfs; bays; Wind stress; Numerical analysis/modeling; Monsoons
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 324
Permanent link to this record
 

 
Author (up) Nof, D.; Zharkov, V.; Arruda, W.; Pichevin, T.; Van Gorder, S.; Paldor, N.
Title Comments on “On the Steadiness of Separating Meandering Currents” Type $loc['typeJournal Article']
Year 2012 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 42 Issue 8 Pages 1366-1370
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 243
Permanent link to this record
 

 
Author (up) Nof, D.; Zharkov, V.; Ortiz, J.; Paldor, N.; Arruda, W.; Chassignet, E.
Title The arrested Agulhas retroflection Type $loc['typeJournal Article']
Year 2011 Publication Journal of Marine Research Abbreviated Journal J Mar Res
Volume 69 Issue 4 Pages 659-691
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2402 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 301
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)