Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (up) Conroy, B.J.; Steinberg, D.K.; Stukel, M.R.; Goes, J.I.; Coles, V.J.
  Title Meso- and microzooplankton grazing in the Amazon River plume and western tropical North Atlantic Type $loc['typeJournal Article']
  Year 2016 Publication Limnology and Oceanography Abbreviated Journal Limnol. Oceanogr.
  Volume 61 Issue 3 Pages 825-840
  Keywords
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Summary Language Original Title
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0024-3590 ISBN Medium
  Area Expedition Conference
  Funding Approved $loc['no']
  Call Number COAPS @ mfield @ Serial 74
Permanent link to this record
 

 
Author (up) Stukel, M. R.; Song, H.; Goericke, R.; Miller, A.J.
  Title The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem Type $loc['typeJournal Article']
  Year 2018 Publication Limnology and Oceanography Abbreviated Journal
  Volume 63 Issue 1 Pages 363-383
  Keywords
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Summary Language Original Title
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Medium
  Area Expedition Conference
  Funding Approved $loc['no']
  Call Number COAPS @ mfield @ Serial 362
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D.
  Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
  Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal
  Volume Issue Pages
  Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae
  Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Summary Language Original Title
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Medium
  Area Expedition Conference
  Funding Approved $loc['yes']
  Call Number COAPS @ user @ Serial 967
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)