Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Tartaglione, C.A.; Smith, S.R.; O'Brien, J.J. url  doi
openurl 
  Title ENSO Impact on Hurricane Landfall Probabilities for the Caribbean Type $loc['typeJournal Article']
  Year 2003 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 16 Issue 17 Pages 2925-2931  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding NOAA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 473  
Permanent link to this record
 

 
Author (up) Taylor, J. P. url  openurl
  Title Comparison of ECMWF and Quikscat-Derived Surface Pressure Gradients Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Flagging Techniques  
  Abstract A technique based solely on QuikSCAT data is developed for determining suspect differences between QSCAT and ECMWF pressure gradients. Pressure fields are computed from scatterometer winds using a variational method that applies a gradient wind conversion. Kinematic analysis of the satellite wind field is performed in order to determine which parameters are physically related to the suspect pressure gradients. It is discovered that the likelihood of these suspect occurrences has the greatest dependence on relative vorticity, total deformation, and the curvature Rossby number. A broad range of these values is tested and a single assessment criterion is derived based upon the value of several skill scores. Overall, the assessment criterion is able to correctly identify the majority of suspect pressure gradients; yet considerable over-flagging does occur in many instances. However, the over-flagging is not random: the false alarms are tightly clustered around the suspect areas, resulting in flagged regions that are too large. Identification of the location of suspect areas in pressure products should be useful to forecasters.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST, SeaWinds Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 619  
Permanent link to this record
 

 
Author (up) Tilburg, C. E.; Hurlburt, H. E.; O'Brien, J. J. openurl 
  Title The role of New Zealand in the separation of the East Australian Current Type $loc['typeReport']
  Year 1999 Publication Abbreviated Journal  
  Volume 28 Issue Pages 8.37-8.38  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title CAS/JSC Working Group on the Numerical Experimentation, Research Activities in Atmospheric and Oceanic Modelling Number Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 775  
Permanent link to this record
 

 
Author (up) Timko, P.G.; Arbic, B.K.; Hyder, P.; Richman, J.G.; Zamudio, L.; O'Dea, E.; Wallcraft, A.J.; Shriver, J.F. url  doi
openurl 
  Title Assessment of shelf sea tides and tidal mixing fronts in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 136 Issue Pages 66-84  
  Keywords HYCOM; tides; seasonal tidal mixing  
  Abstract Tidal mixing fronts, which represent boundaries between stratified and tidally mixed waters, are locations of enhanced biological activity. They occur in summer shelf seas when, in the presence of strong tidal currents, mixing due to bottom friction balances buoyancy production due to seasonal heat flux. In this paper we examine the occurrence and fidelity of tidal mixing fronts in shelf seas generated within a global 3-dimensional simulation of the HYbrid Coordinate Ocean Model (HYCOM) that is simultaneously forced by atmospheric fields and the astronomical tidal potential. We perform a first order assessment of shelf sea tides in global HYCOM through comparison of sea surface temperature, sea surface tidal elevations, and tidal currents with observations. HYCOM was tuned to minimize errors in M2 sea surface heights in deep water. Over the global coastal and shelf seas (depths <200&#8239;m) the area-weighted root mean square error of the M2 sea surface amplitude in HYCOM represents 35% of the 50&#8239;cm root mean squared M2 sea surface amplitude when compared to satellite constrained models TPXO8 and FES2014. HYCOM and the altimeter constrained tidal models TPXO8 and FES2014 exhibit similar skill in reproducing barotropic tidal currents estimated from in-situ current meter observations. Through comparison of a global HYCOM simulation with tidal forcing to a global HYCOM simulation with no tides, and also to previous regional studies of tidal mixing fronts in shelf seas, we demonstrate that HYCOM with embedded tides exhibits quite high skill in reproducing known tidal mixing fronts in shelf seas. Our results indicate that the amount of variability in the location of the tidal mixing fronts in HYCOM, estimated using the Simpson-Hunter parameter, is consistent with previous studies when the differences in the net downward heat flux, on a global scale, are taken into account. We also provide evidence of tidal mixing fronts on the North West Australian Shelf for which we have been unable to find references in the existing scientific literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1032  
Permanent link to this record
 

 
Author (up) Tiscareno-Lopez, M., N. J. Rosenberg, D. M. Legler, A. R. Corral, R. Shrinivasan, R. A. Brown, G. G. Medina, M. A. V. Valle, and R. C. Izaurralde openurl 
  Title Algunos efectos del fenomeno climatico El Nino en la agricultura Mexicana Type $loc['typeJournal Article']
  Year 1998 Publication Ciencia y Desarrollo Abbreviated Journal  
  Volume 24 Issue Pages 4-14  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 742  
Permanent link to this record
 

 
Author (up) Todd, A., D. Dukhovskoy, M. Griffin openurl 
  Title Effectiveness of the Keetch-Byram Drought Index toward the estimation of fires in Florida Type $loc['typeJournal Article']
  Year 2009 Publication Agricultural and Forest Meteorology Abbreviated Journal  
  Volume Issue Pages submitted  
  Keywords KBDI, wildland fire, fire prediction, statistical models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding USDA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 677  
Permanent link to this record
 

 
Author (up) Venugopal, T.; Ali, M.M.; Bourassa, M.A.; Zheng, Y.; Goni, G.J.; Foltz, G.R.; Rajeevan, M. doi  openurl
  Title Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall Type $loc['typeJournal Article']
  Year 2018 Publication SCIENTIFIC REPORTS Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages 12092  
  Keywords SEA-SURFACE TEMPERATURE; EL-NINO; EQUATORIAL PACIFIC; IMPACT; PREDICTION; ENSO; DIPOLE; REGION; SST  
  Abstract This study examines the benefit of using Ocean Mean Temperature (OMT) to aid in the prediction of the sign of Indian Summer Monsoon Rainfall (ISMR) anomalies. This is a statistical examination, rather than a process study. The thermal energy needed for maintaining and intensifying hurricanes and monsoons comes from the upper ocean, not just from the thin layer represented by sea surface temperature (SST) alone. Here, we show that the southwestern Indian OMT down to the depth of the 26 degrees C isotherm during January-March is a better qualitative predictor of the ISMR than SST. The success rate in predicting above- or below-average ISMR is 80% for OMT compared to 60% for SST. Other January-March mean climate indices (e.g., NINO3.4, Indian Ocean Dipole Mode Index, El Nino Southern Oscillation Modoki Index) have less predictability (52%, 48%, and 56%, respectively) than OMT percentage deviation (PD) (80%). Thus, OMT PD in the southwestern Indian Ocean provides a better qualitative prediction of ISMR by the end of March and indicates whether the ISMR will be above or below the climatological mean value.  
  Address Ministry of Earth Sciences, Government of India, New Delhi, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('0108244'); strtoupper('P').strtolower('MC6092415') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 972  
Permanent link to this record
 

 
Author (up) Verschell, M.A. url  openurl
  Title Mechanisms Of Interannual CO2 Flux Variability In The Equatorial Pacific Ocean Type $loc['typeReport']
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages 83  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Center for Ocean-Atmospheric Prediction Studies, Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title COAPS Technical Report Abbreviated Series Title  
  Series Volume 96 Series Issue 5 Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 718  
Permanent link to this record
 

 
Author (up) Verzone, K. V.; Bourassa, M. A.; Bachiochi, D.; Cocke, S. D.; LaRow, T. E.; O'Brien, J. J. openurl 
  Title Double Ensemble Estimates of Precipitation in the Southeastern United States for Extreme ENSO Events Type $loc['typeReport']
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 6.23-6.24  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Ritchie, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 802  
Permanent link to this record
 

 
Author (up) Villas Bôas, A.B.; Ardhuin, F.; Ayet, A.; Bourassa, M.A.; Brandt, P.; Chapron, B.; Cornuelle, B.D.; Farrar, J.T.; Fewings, M.R.; Fox-Kemper, B.; Gille, S.T.; Gommenginger, C.; Heimbach, P.; Hell, M.C.; Li, Q.; Mazloff, M.R.; Merrifield, S.T.; Mouche, A.; Rio, M.H.; Rodriguez, E.; Shutler, J.D.; Subramanian, A.C.; Terrill, E.J.; Tsamados, M.; Ubelmann, C.; van Sebille, E. url  doi
openurl 
  Title Integrated Observations of Global Surface Winds, Currents, and Waves: Requirements and Challenges for the Next Decade Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction &#65533;hot-spots,&#65533; and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1064  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)