Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Weissman, D.E.; Bourassa, M.A.; Tongue, J. url  doi
openurl 
  Title Effects of Rain Rate and Wind Magnitude on SeaWinds Scatterometer Wind Speed Errors Type $loc['typeJournal Article']
  Year 2002 Publication Journal of Atmospheric and Oceanic Technology Abbreviated Journal J. Atmos. Oceanic Technol.  
  Volume 19 Issue 5 Pages 738-746  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0739-0572 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 830  
Permanent link to this record
 

 
Author (up) Weissman, DE; Bourassa, MA url  doi
openurl 
  Title The effect of rain on ASCAT observations of the sea surface radar cross section using simultaneous 3-d NEXRAD rain measurements Type $loc['typeConference Article']
  Year 2011 Publication IEEE International Symposium on Geoscience and Remote Sensing IGARSS Abbreviated Journal  
  Volume Issue Pages 1171-1174  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IEEE International Geoscience and Remote Sensing Symposium (IGARSS)  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 314  
Permanent link to this record
 

 
Author (up) Weissman, DE; Morey, S; Bourassa, M url  doi
openurl 
  Title Studies of the effects of rain on the performance of the SMAP radiometer surface salinity estimates and applications to remote sensing of river plumes Type $loc['typeConference Article']
  Year 2017 Publication IEEE International Symposium on Geoscience and Remote Sensing IGARSS Abbreviated Journal  
  Volume Issue Pages 1491-1494  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 834  
Permanent link to this record
 

 
Author (up) Wentz, F.J.; Ricciardulli, L.; Rodriguez, E.; Stiles, B.W.; Bourassa, M.A.; Long, D.G.; Hoffman, R.N.; Stoffelen, A.; Verhoef, A.; O'Neill, L.W.; Farrar, J.T.; Vandemark, D.; Fore, A.G.; Hristova-Veleva, S.M.; Turk, F.J.; Gaston, R.; Tyler, D. url  doi
openurl 
  Title Evaluating and Extending the Ocean Wind Climate Data Record Type $loc['typeJournal Article']
  Year 2017 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J Sel Top Appl Earth Obs Remote Sens  
  Volume 10 Issue 5 Pages 2165-2185  
  Keywords Radar cross section; remote sensing; satellite applications; sea surface; wind  
  Abstract Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 sigmao measurements include 1) direct Ku-band sigmao intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times.  
  Address Jet Propulsion Laboratory, Pasadena, CA 91109 USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-1404 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:28824741; PMCID:PMC5562405 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 68  
Permanent link to this record
 

 
Author (up) White, L.D.; Tewari, M.; Krishnamurti, T.N. url  doi
openurl 
  Title Application of a GCM to Study the Surface Hydrological Budget of Amazonia Type $loc['typeJournal Article']
  Year 1998 Publication Journal of Applied Meteorology Abbreviated Journal J. Appl. Meteor.  
  Volume 37 Issue 10 Pages 1321-1331  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8763 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 743  
Permanent link to this record
 

 
Author (up) Williams, M url  openurl
  Title Characterizing Multi-Decadal Temperature Variability in the Southeastern United States Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Meteorology, Climate Variability, Climate, Warm Regime, Cold Regim  
  Abstract Prior studies of the long-term temperature record in the Southeastern United States (SE US) mostly discuss the long-term cooling trend, and the inter-annual variability produced by the region's strong ties to El Niño Southern Oscillation (ENSO). An examination of long-term temperature records in the SE US show clear multi-decadal variations in temperature, with relative warm periods in the 1920's through the mid 1950's and a cool period in the late 1950's through the late 1990's. This substantial shift in multi-decadal variability is not well understood and has not been fully investigated. It appears to account for the long-term downward trend in temperatures. An accurate characterization of this variability could lead to improved interannual and long-term forecasts, which would be useful for agricultural planning, drought mitigation, water management, and preparation for extreme temperature events. Statistical methods are employed to determine the spatial coherence of the observed variability on seasonal time scales. The goal of this study is to characterize the nature of this variability through the analysis of National Weather Service Cooperative Observer Program (COOP) station data in Florida, Georgia, Alabama, North Carolina, and South Carolina. One finding is a shift in the temperature Probability Distribution Function (PDF) between warm regimes and cool regimes.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 578  
Permanent link to this record
 

 
Author (up) Williford, C. E.; Krishnamurti, T.N.; Torres, R.C.; Cocke, S.; Christidis, Z.; Vijaya Kumar, T.S. url  doi
openurl 
  Title Real-Time Multimodel Superensemble Forecasts of Atlantic Tropical Systems of 1999 Type $loc['typeJournal Article']
  Year 2003 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 131 Issue 8 Pages 1878-1894  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 839  
Permanent link to this record
 

 
Author (up) Winsberg, M. D.; O'Brien, J. J.; Zierden, D.; Griffin, M. url  openurl
  Title Florida Weather Type $loc['typeBook Whole']
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher University Press of Florida Place of Publication Gainesville, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 841  
Permanent link to this record
 

 
Author (up) Winterbottom, H url  openurl
  Title The Development of a High-Resolution Coupled Atmosphere-Ocean Model and Applications Toward Understanding the Limiting Factors for Tropical Cyclone Intensity Prediction Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Tropical cyclone vortex initialization, Coupled atmosphere-ocean model  
  Abstract The prediction of tropical cyclone (TC) motion has improved greatly in recent decades. However, similar trends remain absent with respect to TC intensity prediction. Several hypotheses have been proposed attempting to explain why dynamical NWP models struggle to predict TC intensity. The leading candidates are as follows: (1) the lack of an evolving ocean (i.e., sea-surface temperature) boundary condition which responds as a function of the atmosphere (e.g., TC) forcing, (2) inappropriate initial conditions for the TC vortex (e.g., lack of data assimilation methods), (3) NWP model grid-length resolutions which are unable to resolve the temporal and length scale for the features believed responsible for TC vortex intensity. modulations (i.e., eye-wall dynamics, momentum transport, vortex Rossby wave interactions, etc.), and (4) physical parametrization which do not adequately represent the air-sea interactions observed during TC passage. In this study, a coupling algorithm for two independent, high-resolution, and state-of-the-art atmosphere and ocean models is developed. The atmosphere model -- the Advanced Weather Research and Forecasting (WRF-ARW) model is coupled to the HYbrid Coordinate Ocean Model (HYCOM) using a (UNIX) platform independent and innovative coupling methodology. Further, within the WRF-ARW framework, a dynamic initialization algorithm is developed to specify the TC vortex initial condition while preserving the synoptic-scale environment. Each of the tools developed in this study is implemented for a selected case-study: TC Bertha (2008) and TC Gustav (2008) for the coupled-model and TC vortex initialization, respectively. The experiment results suggest that the successful prediction (with respect to the observations) for both the ocean response and the TC intensity cannot be achieved by simply incorporating (i.e., coupling) an ocean model and/or by improving the initial structure for the TC. Rather the physical parametrization governing the air-sea interactions is suggested as the one of the weaknesses for the NWP model. This hypothesis is (indirectly) supported through a diagnostic evaluation of the synoptic-scale features (e.g., sea-level pressure and the deep-layer mean wind beyond the influence of the TC) while the assimilated TC vortex is nudged toward the observed intensity value. It is found -- in the case of TC Gustav (2008) using WRF-ARW, that as the assimilated TC vortex intensity approaches that of the observed, the balance between the mass and momentum states for WRF-ARW is compromised leading to unrealistic features for the environmental sea-level pressure and deep-layer (800- to 200-hPa) mean wind surrounding the TC. Forcing WRF-ARW to assimilate a TC vortex of the observed maximum wind-speed intensity may ultimately compromise the prediction for the TC's motion and subsequently mitigate any gains for the corresponding intensity prediction.Suggestions for additions to the coupled atmosphere-ocean model include a wave-model (WAVEWATCH3), the assimilation of troposphere thermodynamic observations, and modifications to the existing atmospheric boundary-layer parametrization. The current suite of atmosphere model parametrizations do not accurately simulate the observed azimuthal and radial variations for the exchange coefficients (e.g., drag and enthalpy) that have been indicated as potentialpredictor variables for TC intensity modulation. However, these modifications should be implemented only after the limitations for the current coupled-model and TC vortex initialization methods are fully evaluated.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 572  
Permanent link to this record
 

 
Author (up) Winterbottom, H.R.; Chassignet, E.P. url  doi
openurl 
  Title A vortex isolation and removal algorithm for numerical weather prediction model tropical cyclone applications Type $loc['typeJournal Article']
  Year 2011 Publication Journal of Advances in Modeling Earth Systems Abbreviated Journal J. Adv. Model. Earth Syst.  
  Volume 3 Issue 4 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-2466 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 313  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)