Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stewart, M. L. url  openurl
  Title Cyclogenesis and Tropical Transition in Frontal Zones Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Noel(2001), Gaston(2004), Front, QuikSCAT, Peter(2003), Tropical Transition  
  Abstract Tropical cyclones can form from many different precursors, including baroclinic systems. The process of an extratropical system evolving into a warm core tropical cyclone is defined by Davis and Bosart (2004) as a Tropical Transition (TT) with further classification of systems into Weak Extratropical Cylclones (WEC) and Strong Extratropical Cyclones (SEC). It is difficult to predict which systems will make the transition and which will not, but the description of a common type of TT occurring along a front will aid forecasters in identifying systems that might undergo TT. A wind speed and SST relationship thought to be necessary for this type of transition is discussed. QuikSCAT and other satellite data are used to locate TT cases forming along fronts and track their transformation into tropical systems. Frontal TT is identified as a subset of SEC TT and the evolution from a frontal wave to a tropical system is described in five stages. A frontal wave with stronger northerly wind and weaker southerly wind is the first stage in the frontal cyclogenesis. As the extratropical cyclogenesis continues in the next two stages, bent back warm front stage and instant occlusion stage, the warmer air of the bent back front becomes surrounded by cooler air . Next, in the subtropical stage the latent heat release energy from the ocean surface begins ascent and forms a shallow warm core. As the energy from surface heat fluxes translates to convection within the system, the warm core extends further into the upper levels of the atmosphere in the final, tropical stage of TT. Model data from MM5 simulations of three storms, Noel (2001), Peter (2003) and Gaston (2004) are analyzed to illustrate the five stages of frontal TT. Noel is found to have the most baroclinic origin of the three and Gaston the least.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, SeaWinds, OVWST, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 613  
Permanent link to this record
 

 
Author Strazzo, S url  openurl
  Title Low-Frequency Minimum Temperature Variability Throughout the Southeastern United States during the 1970s: Regime Shift or Phase Coincidence? Type $loc['typeManuscript']
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Low-frequency variability; Climate variability; Climate regime  
  Abstract  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 336  
Permanent link to this record
 

 
Author Stricherz, J. N.z, J. N.; Legler, D. M.; O'Brien, J. J. url  openurl
  Title TOGA Pseudo-Stress Atlas 1985-1994: Volume 2: Tropical Pacific Ocean Type $loc['typeReport']
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 170  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Center for Ocean-Atmospheric Prediction Studies, Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title COAPS Technical Report 97-2 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 736  
Permanent link to this record
 

 
Author Stroman, A url  openurl
  Title The Rendition of the Atlantic Warm Pool in Reanalyses Type $loc['typeManuscript']
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Wang; lead-lag; Contemporaneously; Correlations; Tendency  
  Abstract  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 337  
Permanent link to this record
 

 
Author Stukel, M.R.; Barbeau, K.A. url  doi
openurl 
  Title Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump Type $loc['typeJournal Article']
  Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 47 Issue 6 Pages e2020GL087351  
  Keywords  
  Abstract We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore-offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron-limitation. The biological carbon pump was enhanced in high nutrient and Fe-stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe-stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non-Redfieldian nutrient uptake by diatoms may lead to high PO:NO and Si(OH):NO ratios, following export of P- and Si-enriched organic matter. Increased export following Fe-stress may partially explain inverse relationships between net primary productivity and export efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1112  
Permanent link to this record
 

 
Author Stukel, M.R.; Ducklow, H.W. url  doi
openurl 
  Title Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean Type $loc['typeJournal Article']
  Year 2017 Publication Global Biogeochemical Cycles Abbreviated Journal Global Biogeochem. Cycles  
  Volume 31 Issue 9 Pages 1420-1434  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0886-6236 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 361  
Permanent link to this record
 

 
Author Stukel, M.R.; Kelly, T.B. url  doi
openurl 
  Title The carbon: 234Thorium ratios of sinking particles in the California current ecosystem 2: Examination of a thorium sorption, desorption, and particle transport model Type $loc['typeJournal Article']
  Year Publication Marine Chemistry Abbreviated Journal Marine Chemistry  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4203 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1037  
Permanent link to this record
 

 
Author Stukel, M.R.; Kelly, T.B. url  doi
openurl 
  Title The carbon: (234) Thorium ratios of sinking particles in the California current ecosystem 2: Examination of a thorium sorption, desorption, and particle transport model Type $loc['typeJournal Article']
  Year 2019 Publication Marine Chemistry Abbreviated Journal Marine Chemistry  
  Volume 212 Issue Pages 1-15  
  Keywords POC concentration; sinking particles.; depth and relationship with water; phytoplankton  
  Abstract Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon: thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4203 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1002  
Permanent link to this record
 

 
Author Stukel, M. R.; Song, H.; Goericke, R.; Miller, A.J. url  doi
openurl 
  Title The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem Type $loc['typeJournal Article']
  Year 2018 Publication Limnology and Oceanography Abbreviated Journal  
  Volume 63 Issue 1 Pages 363-383  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 362  
Permanent link to this record
 

 
Author Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D. url  doi
openurl 
  Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
  Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal  
  Volume Issue Pages  
  Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae  
  Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['yes']  
  Call Number COAPS @ user @ Serial 967  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)